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Equations of motion with required boundary conditions for doubly curved deep 

and thick composite shells are shown using two formulations. The first is based upon the 

formulation that was presented initially by Rath and Das (1973, J. Sound and Vib.) and 

followed by Reddy (1984, J. Engng. Mech. ASCE). In this formulation, plate stiffness 

parameters are used for thick shells, which reduced the equations to those applicable for 

shallow shells. This formulation is widely used but its accuracy has not been completely 

tested. The second formulation is based upon that of Qatu (1995, Compos. Press. Vessl. 

Indust.; 1999, Int. J. Solids Struct.). In this formulation, the stiffness parameters are 

calculated by using exact integration of the stress resultant equations. In addition, Qatu 

considered the radius of twist in his formulation. In both formulations, first order 

polynomials for in-plane displacements in the z-direction are utilized allowing for the 

inclusion of shear deformation and rotary inertia effects (first order shear deformation 

theory or FSDT). Also, FSDTQ has been modified in this dissertation using the radii of 

each laminate instead of using the radii of mid-plane in the moment of inertias and stress 
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resultants equations. Exact static and free vibration solutions for isotropic and symmetric 

and anti-symmetric cross-ply cylindrical shells for different length-to-thickness and 

length-to-radius ratios are obtained using the above theories. Finally, the equations of 

motion are put together with the equations of stress resultants to arrive at a system of 

seventeen first-order differential equations. These equations are solved numerically with 

the aid of General Differential Quadrature (GDQ) method for isotropic, cross-ply, angle-

ply and general lay-up cylindrical shells with different boundary conditions using the 

above mentioned theories. Results obtained using all three theories (FSDT, FSDTQ and 

modified FSDTQ) are compared with the results available in literature and those obtained 

using a three-dimensional (3D) analysis. The latter (3D) is used here mainly to test the 

accuracy of the shell theories presented here. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

Light weight and high stiffness characteristics of structures made of laminated 

composite materials have provided excellent new opportunities in the design of many 

engineering structures. These include applications in automotive, aerospace and 

submarine structures. The relative simplicity of shell and plate theories and complexity of 

composite structures (which often makes these structures hard to analyze by three 

dimensional (3D) elasticity methods) have led to the development of different shell and 

plate theories. In the development of plate theories, the thickness ratios of the shell and 

plate are the main issue in categorizing different types of these plate theories. These 

classifications are mainly called Classical Theories, First-order Shear Deformation 

Theories (FSDTs) and Higher-order Shear Deformation Theories (HSDTs). Besides the 

effect of the thickness of shells, the effect of depth ratio of shells should be included in 

the development of shell theories. Some researchers included the effects of depth ratio in 

the development of shell theories, e.g. Qatu[1,2]. However, in spite of the effects of 

thickness ratio which are fairly addressed in literature, the effects of depth ratio need to 

be examined in the development of different shell theories. This is one of the main 

contributions of this work. 

In the basic equations derived for shells, difficulties arise as a term (1+z/R) 

appears in both the strain displacement and stress resultant equations. This term 
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introduced difficulty early in the development of shell theories. Some researchers 

included the term even for thin isotropic shells like Flügge [3] and Vlasov [4] while 

others ignored it like Love [5]. Significant analyses of isotropic thin shells showed that 

indeed the term is negligible for such thin isotropic shells. 

The term was neglected by first analysts of composite thin shells (e.g. 

Ambartsumian [6]). While this is understandable for thin shells, the importance of the 

inclusion of the term needs to be tested for thicker shells. In addition to the inclusion of 

this term, both shear deformation and rotary inertia should be included for composite 

thick shells. Early treatment of composite thick shells [7, 8] included both shear 

deformation and rotary inertia but failed to include the z/R terms. We will refer to these 

as simply the first order shear deformation theory (FSDT). Qatu [1,2] presented equations 

where the term is carefully considered in the shell equations for composite deep thick 

shells. However, Qatu only presented the exact solution for free vibration problem of 

cross-ply cylindrical shells and the accuracy of his equations regarding other FSDTs 

needs to be examined. We will refer to his equations as the first order shear deformation 

shell theory by Qatu (FSDTQ). These equations will be described and modified in detail 

here.  

 

1.1. Motivation and Objectives 

There are a considerable number of shell theories in the literature and each one of 

them uses certain assumptions. However, most of them fail to provide accurate analysis 

when the radius of the shells is relatively large. This dissertation deals with different type 

of shell theories, their accuracy when comparing them with three dimensional solutions, 
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possible modification of them to achieve a higher level of accuracy, and the limitation of 

each of the shell theories regarding the thickness and depth ratios of the shell. 

 

1.2. Overview 

This dissertation is divided into seven chapters. In the second chapter a general 

and complete literature review on the analyses of composite shells is done. As a prelude, 

the third chapter deals with the vibration of doubly curved shells with different 

boundaries. In this chapter, a classical shell theory is employed to treat cylindrical, 

spherical and paraboidal shells and plate with all possible type of boundary conditions 

with Ritz method. Exact solution for both static and free vibration of composite shells 

based on FSDTQ and FSDT are obtained in chapter four. Also, FSDTQ has been 

modified to take in to account the radii of each laminate instead of the mid-surface in the 

formulation. This modification improves the accuracy of the results. These results are 

obtained for the case of fully simply supported boundary conditions and the results are 

compared with those of 3D analysis by finite element software. Static analysis of 

composite shells based on FSDTQ and FSDT with different boundary conditions has 

been done by General Differential Quadrature (GDQ) method in chapter five. Six types 

of boundary conditions are selected for this study and the results are compared with the 

available results in literature and those obtained from 3D finite element analysis. Chapter 

six deals with the same problem as chapter five but it is for the free vibration problem of 

composite shells. Finally, concluding remarks and suggestions for future works from this 

dissertation are presented in chapter seven. 
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In summary, the major contributions of this dissertation are: 

 Test the accuracy of various shell theories in static and vibration analyses 

 Develop exact and approximate solutions for various set of shell problems 

(different boundaries, static, and vibration) and test their accuracy 

 Improve on existing shell theories to achieve higher level of accuracy 
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CHAPTER 2 

LITERATURE REVIEW 
 
 

The use of laminated composite shells in many engineering applications has been 

expanding rapidly in the past four decades due to their higher strength and stiffness to 

weight ratios when compared to most metallic materials. Composite shells now constitute 

a large percentage of recent aerospace or submarine structures. They are used 

increasingly in areas such as automotive engineering, biomedical engineering and other 

applications. 

Literature on composite shell research can be found in many national and 

international conferences and journals. A recent article [3] focused on the recent research 

done on the dynamic behavior of composite shells wherein problems of free vibration, 

shock, wave propagation, dynamic stability, damping and viscoplastic behavior related to 

laminated shells are discussed. Several review articles on the subject, such as  Qatu [2, 4], 

Kapania [5], Noor and Burton [6, 7], Noor et al. [8], and Soldatos [9] covered much of 

the research done in past decades. Computational aspects of the research were covered by 

Noor and Burton [6, 7], Noor et al. [8, 10] and Noor and Venneri [11]. Carrera [12] 

presented a historical review of zigzag theories for multilayered plates and shells. He also 

reviewed the theories and finite elements for multilayered, anisotropic, composite plates 

and shells [13]. Among the recent books on the subject are those by Reddy [14], Ye [15], 

Lee [16], and Shen [17]. 



www.manaraa.com

7 

This article reviews only recent research (2000 through 2010) done on the static 

and buckling analyses of composite shells. It includes stress, deformation, buckling and 

post buckling analyses under mechanical, thermal, hygrothermal or electrical loading.  

This article classifies research based upon the shell theories typically used. These 

include thin (or classical) and thick shell theories (including shear deformation and three 

dimensional theories), shallow and deep theories, linear and nonlinear theories, and 

others. Most theories are classified based on the thickness ratio of the shell being treated 

(defined as the ratio of the thickness of the shell to the shortest of the span lengths and/or 

radii of curvature), its shallowness ratio (defined as the ratio of the shortest span length to 

one of the radii of curvature) and the magnitude of deformation (compared mainly to its 

thickness). Fundamental equations are listed for the types of shells used by most 

researchers in other publications [1-4]. Finite element analysis is gaining notable increase 

in its usage for solving composite shell problems. 

The literature is reviewed while focusing on various aspects of research. Focus will 

first be placed on the various shell geometries that are receiving attention in recent years. 

Among classical shell geometries are the cylindrical, spherical, conical shells and other 

shells of revolution; other shells like shallow shells are also included in this review.  

Stress and deformation analyses, in which various boundary conditions and/or shell 

geometries are considered, buckling and post-buckling problems, and finally research 

dealing with thermal and/or hygrothermal environments will be reviewed. The third 

aspect of research will focus on material-related complexities, which include 

piezoelectric or other complex materials. Structural-related complexities will be the final 
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category that will be addressed.  This will include stiffened shells, shells with cut-outs, 

shells with imperfections or other complexities. 

 

2.1. Shell theories 

Shells are three dimensional bodies bounded by two, relatively close, curved 

surfaces. The three dimensional equations of elasticity are complicated when written in 

curvilinear, or shell, coordinates. Researchers simplify such shell equations by making 

certain assumptions for particular applications. Almost all shell theories (thin and thick, 

deep and shallow …) reduce the three-dimensional (3D) elasticity problem into a two 

dimensional (2D) problem. The accuracy of thin and thick shell theories is established 

when their results are compared to those of 3D theory of elasticity.  

 

2.1.1. Three dimensional elasticity theory 

A shell is a three dimensional body confined by two parallel (unless the thickness 

is varying) surfaces. In general, the distance between those surfaces is small compared 

with other shell parameters. In this section, the equations from the theory of 3D elasticity 

in curvilinear coordinates are presented. The literature regarding vibrations of laminated 

shells using 3D elasticity theory will then be reviewed.  

Consider a shell element of thickness h, radii of curvature R and R ( a radius of 

twist R is not shown here) (Fig. 2.1).  Assume that the deformation of the shell is 

small compared to the shell dimensions. This assumption allows us to neglect nonlinear 
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terms in the subsequent derivation. It will also allow us to refer the analysis to the 

original configuration of the shell. The strain displacement relations can be written as [1] 

1 1
(1 / )

1 1
(1 / )

u v A w
z R A AB R

v u B w
z R B AB R
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The laminated composite shells are assumed to be composed of plies of 

unidirectional long fibers embedded in a matrix material.  On a macroscopic level, each 

layer may be regarded as being homogeneous and orthotropic.  However, the fibers of a 

typical layer may not be parallel to the coordinates in which the shell equations are 

expressed. The stress-strain relationship for a typical nth lamina in a laminated composite 

shell made of N laminas is shown in Fig. 2.2 and given by Eq. (2) [1].   
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The positive notations of the stresses are shown in Fig. 2.1.  

In order to develop a consistent set of equations, the boundary conditions and the 

equations of motion will be derived using Hamilton’s principle [1], which yields the 

following equations of motion 
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Figure 2.1: Stresses in shell coordinates (free outer surfaces) 

 

Hamilton's principle will also yield boundary terms that are consistent with the 

other equations. The boundary terms for z = constant are: 
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      (4) 

where  0z , 0z   and  0z are surface tractions and u0, v0 and w0 are displacement 

functions at z = constant.   Similar results are obtained for the boundaries  = constant 

and  = constant. A three dimensional shell element has six surfaces. With three 
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equations at each surface, a total of 18 equations can be obtained for a single-layered 

shell.  

The above equations are valid for single-layered shells. To use 3D elasticity 

theory for multi-layered shells, each layer must be treated as an individual shell.  Both 

displacements and stresses must be continuous between each layer ( layer k to  layer k+1) 

in a n-ply laminate to insure that there are no free internal surfaces (i.e., delamination) 

between the layers.   
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Among the recent work that used 3D theory of elasticity is the work of Sheng and 

Ye [18] who presented a 3D state space finite element solution for composite cylindrical 

shells. Wu and Lo [19] discussed 3D elasticity solutions of laminated annular spherical 

shells. Wang and Zhong [20] used 3D theory to solve problems with smart laminated 

anisotropic circular cylindrical shells with imperfect bonding. Li and Shen [21] studied 

postbuckling of 3D textile composite cylindrical shells under axial compression in 

thermal environments. Santos et al [22, 23] showed a finite element model for the 

analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators. 

Sprenger et al [24] investigated delamination growth in laminated structures with 3D-

shell elements and a viscoplastic softening model. Li and Shen [25, 26] analyzed 
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postbuckling of 3D braided composite cylindrical shells under various loading in thermal 

environments. Alibeigloo and Nouri [27] found a three-dimensional solution for static 

analysis of functionally graded (FG) cylindrical shells with bonded piezoelectric layers 

by utilizing differential quadrature method (DQM) to the edge boundary conditions and 

in-plane differentials and using state-space approach for discrete points. Fagiano et al. 

[28] used 3-D finite element method to accurately predict interlaminar stresses for 

multilayer composite shells. 

 

2.1.2. Thick shell theory 

Thick shells are defined as shells with a thickness smaller by at least one order of 

magnitude when compared with other shell parameters such as wavelength and/or radii of 

curvature (thickness is at least 1/10th  of the smallest of the wavelength and/or radii of 

curvature).  The main differentiation between thick shell and thin shell theories is the 

inclusion of shear deformation and rotary inertia effects. Theories that include shear 

deformation are referred to as thick shell theories or shear deformation theories.  

Thick shell theories are typically based on either a displacement or stress approach. 

In the former, the midplane shell displacements are expanded in terms of shell thickness, 

which can be a first order expansion, referred to as first order shear deformation theories. 

The 3D elasticity theory is reduced to a 2D theory using the assumption that the 

normal strains acting upon the plane parallel to the middle surface are negligible 

compared with other strain components. This assumption is generally valid except within 

the vicinity of a highly concentrated force (St. Venant’s principle). In other words, no 
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stretching is assumed in the z-direction (i.e., z=0). Assuming that normals to the 

midsurface strains remain straight during deformation but not normal, the displacements 

can be written as [1] 

u z u z B

v z v z B

w z w

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , )

     

     

   





 

 



0

0

0          (6) 

 

 

Figure. 2.2: Lamination parameters in shells 

 

where u0, v0 and w0 are midsurface displacements of the shell and  and  are 

midsurface rotations. An alternative derivation can be made with the assumption z = 0. 

The subscript (0) will refer to the middle surface in subsequent equations. The above 

equations describe a typical first-order shear deformation shell theory, and will constitute 
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the only assumption made in this analysis when compared with the 3D theory of 

elasticity. As a result, strains are written as [1] 
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where the midsurface strains are: 
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and the curvature and twist changes are: 
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Figure 2.3: Force resultants in shell coordinates 

 

 

Figure 2.4: Moment resultants in shell coordinates 
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The force and moment resultants (Figs 2.3 and 2.4) are obtained by integrating the 

stresses over the shell thickness considering the (1+z/R) term that appears in the 

denominator of the stress resultant equations [5]. The stress resultant equations are: 
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where ˆ ˆ ˆ, , , , , , , , ,ij ij ij ij ij ij ij ij ijA B D A B D A B and D are defined in 

[1]. 

It has been shown [1,5] that the above Eqs. (9) and (10) yield more accurate results 

when compared with those of plates and those traditionally used for shells [18]. 

Hamilton's principle can be used to derive the consistent equations of motion and 

boundary conditions. The equations of motion are [1-4]: 
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where the two dots over the terms represent the second derivative of these terms with 

respect to time, and where: 
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The boundary terms for the boundaries with  =constant are 
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Similar equations can be obtained for  = constant. Eqs. (9) and (10) are significantly 

different from those that cover most of first order shear deformation theories (FSDTs) for 

shells which neglect the effect of /z R  in the stress resultant equations.  

Shear deformation theories were used by many authors (e.g. Qatu [4]). Chaudhuri 

[29] presented a nonlinear zigzag theory for finite element analysis of shear-deformable 

laminated shells. Krejaa and Schmidt [30] studied large rotations in shear deformation 

finite element analysis of laminated shells. Non-linear buckling and postbuckling of a 

moderately thick anisotropic laminated cylindrical shell of finite length subjected to 

lateral pressure, hydrostatic pressure and external liquid pressure based on a higher order 

shear deformation shell theory with von Kármán–Donnell-type of kinematic non-linearity 

and including the extension/twist, extension/flexural and flexural/twist couplings were 

presented by Li and Lin [31] wherein the material property of each layer could be linearly 

elastic, anisotropic and fiber-reinforced. A mixed meshless computational method based 

on the Local Petrov–Galerkin approach for analysis of plate and shell structures was 

presented by Sorić and Jarak [32]. They overcame the undesired locking phenomena and 

demonstrated that this meshless method is numerically more efficient than the available 

meshless fully displacement approaches. Shen [33, 34] investigated postbuckling of shear 

deformable cross-ply laminated cylindrical shells under combined loading. Piskonov et al 

[35] were interested in a rotational higher order shear deformation theory of anisotropic 

laminated plates and shells. Iozzi and Gaudenzi [36] showed shear deformable shell 

elements for adaptive laminated structures. Han et al [37] performed a geometrically 

nonlinear analysis of laminated composite thin shells using a modified first-order shear 

deformable element. Other studies that used a shear deformation shell theory include 
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those of Li [38], Zenkour [39], Shen [40], Shen and Li [41], Balah and Al-Ghamedy [42], 

and Ferriera [43].  

Zhen and Wanji [44] presented a higher order theory for multilayered shells and 

performed analysis on laminated cylindrical shell panels. Khare et al [45] discussed 

closed-form thermo-mechanical solutions of higher-order theories of cross-ply laminated 

shallow shells. Khare and Rode [46] showed similar solutions for thick laminated 

sandwich shells. Ferreira et al [47] modeled cross-ply laminated elastic shells by a 

higher-order theory. Alijani and Aghdam [48] presented a semi-analytical solution for 

stress analysis of moderately thick laminated cylindrical panels with various boundary 

conditions. Pinto Correia et al [49] analyzed laminated conical shell structures for 

buckling using higher order models. Matsunaga [50] studied thermal buckling of cross-

ply laminated composite shallow shells according to a higher order deformation theory. 

Oh and Cho [51] investigated a higher order zigzag theory for smart composite shells 

under mechanical-thermo-electric loading. Yaghoubshahi et al. [52] employed general 

higher-order shear deformation theory and formulated it to analyze deep composite shells 

with mixed boundary conditions. Benson et al. [53] presented a Reissner–Mindlin shell 

formulation based on a degenerated solid is implemented for NURBS-based isogeometric 

analysis. They constructed a user-defined element in LS-Dyna for industrial purposes to 

analyze elasto-plastic behavior of shells. 

In general, layer-wise laminate theories are used to properly represent local effects, 

such as interlaminar stress distribution, delaminations, etc. These theories are typically 

employed for cases involving anisotropic materials in which transverse shear effects 
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cannot be ignored. Recent studies include Yuan et al [54] in which a stress projection, 

layer-wise-equivalent formulation was used for accurate predictions of transverse stresses 

in laminated plates and shells. Kim and Chaudhuri [55-56] and Chaudhuri and Kim [57] 

described a layer-wise linear displacement distribution theory and based their analysis on 

it to investigate the buckling and shear behavior of a long cross-ply cylindrical shell 

(ring).  Leigh and Tafreshi [58] used layerwise shell finite element based on first order 

shear deformation theory to investigate delamination buckling of composite cylindrical 

shells. A static analysis of thick composite circular arches using a layerwise differential 

quadrature technique was performed by Malekzadeh [59]. Roh et al [60, 61] investigated 

the thermo-mechanical behavior of shape memory alloys using a finite element method 

based on layerwise theory. The theory of layerwise displacement field was used to 

perform a finite element analyses of aero-thermally buckled composite shells by Shin et 

al [62]. The displacement field of a layerwise theory was also used to develop laminated 

beam theories by Tahani [63].  

 

2.1.3. Thin shell theory 

If the shell thickness is less than 1/20th of the other shell dimensions (e.g. length)  

and/or radii of curvature, a thin shell theory, where shear deformation and rotary inertia 

are negligible, is generally acceptable. Depending on various assumptions made during 

the derivation of the strain-displacement relations, stress-strain relations, and the 

equilibrium equations, various thin shell theories can be derived [5]. All these theories 

were initially derived for isotropic shells and expanded later for laminated composite 
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shells by applying the appropriate integration through laminas, and stress-strain relations. 

For very thin shells, the shell is thin such that the ratio of the thickness compared to any 

of the shell's radii or any other shell parameter, i.e., width or length, is negligible when 

compared to unity. Also, for thin shells, the normals to the middle surface remain straight 

and normal when the shell undergoes deformation. These assumption assures that certain 

parameters in the shell equations (including the z/R) term mentioned earlier in the thick 

shell theory can be neglected. The shear deformation can be neglected in the kinematic 

equations allowing the in-plane displacement to vary linearly through the shell's thickness 

as given by 
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where the midsurface strains, curvature and twist changes are 
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and where   
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Applying Kirchhoff hypothesis of neglecting shear deformation and the assumption that 

z is negligible, the stress-strain equations for an element of material in the kth lamina 

may be written as [1] 
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where  and   are normal stress components,  is the in-plane shear stress 

component [1],  and    are the normal strains,  and  is the in-plane engineering 

shear strain.  The terms Qij are the elastic stiffness coefficients for the material. If the 

shell coordinates (,) are parallel or perpendicular to the fibers, then the terms Q16 and 

Q26 are both zero.  Stresses over the shell thickness (h) are integrated to get the force and 

moment resultants as given by  
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where Aij , Bij , and Dij are the stiffness coefficients arising from the piecewise 

integration over the shell thickness (Eq. 10b).  For shells which are laminated 

symmetrically with respect to their midsurfaces, all the Bij terms become zero.  Note that 
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the above equations are the same as those for laminated plates, which are also valid for 

thin laminated shells.  Using Hamilton’s principle yields the following equations of 

motion. 
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The following boundary conditions can be obtained for thin shells for  = constant 

(similar equations can be obtained for  = constant).  
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Shen [64] studied buckling and postbuckling of laminated thin cylindrical shells 

under hygrothermal environments. Soldatos and Shu [65] discussed modeling of perfectly 

and weakly bonded laminated plates and shallow shells. Chaudhuri et al [66] presented 

admissible boundary conditions and solutions to internally pressurized thin cylindrical 



www.manaraa.com

25 

shells. Khosravi et al [67] illustrated a shell element for co-rotational nonlinear analysis 

of thin and moderately thick laminated structures. Sofiyev et al [68] discussed buckling 

of laminated cylindrical thin shells under torsion. Weicker et al. [69,70] in two 

companion papers derived governing equilibrium conditions for a thin-walled pipe 

subjected to general loading based on thin shell theory and found exact and finite element 

solutions and compared them with each others. Kiendla et al. [71] proposed an 

isogeometric formulation for rotation-free thin shell analysis of structures comprised of 

multiple patches and applied that to real wind turbine problems. Prabu et al. [72] 

performed a parametric study on buckling behavior of dented short carbon steel 

cylindrical thin shell subjected to uniform axial compression by non-linear static buckling 

analysis. The elastic modulus reduction method (EMRM) proposed by Yu and Yang [73] 

to calculate lower-bound limit loads of thin plate and shell structures. Challagulla et al 

[74] performed micromechanical analysis of grid-reinforced thin composite shells. Stress, 

deformation and stability conditions for thin doubly curved shallow bimetallic shells with 

taking to account large displacements under homogenous thermal field were done by 

Jakomina et al. [75]. Ghassemi et al. [76] employed a finite element model in order to 

analyze large displacements. Since, the finite-element implementation for this kind of 

problems suffers from membrane and shear locking, especially for very thin shells, the 

mid-surface of the shell is regarded as a Cosserat surface with one inextensible director to 

overcome these numerical problems. Other studies include those of Morozov [77], Guz' 

and Shnerenko [78], and Maksimyuk and Chernyshenko [79]. 
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2.1.4. Nonlinear theories 

The magnitude of transverse displacement compared to shell thickness is the third 

criterion used in classifying shell equations. In many cases, nonlinear terms in the 

fundamental shell equations are expanded using perturbation methods, and smaller orders 

of the rotations are retained. Most frequently, the first order only is retained and 

occasionally third orders have been included in nonlinear shell theories. In some shell 

problems, the material used can also be nonlinear (e.g., rubber, plastics and others).  

Theories that include nonlinear material constants are also referred to as nonlinear shell 

theories as well. The vast majority of shell theories, however, deal with geometric 

nonlinearity only.  

 Galishin and Shevchenko [80] determined the axisymmetric nonlinear 

thermoelastoplastic state of laminated orthotropic shells. Wang et al [81] studied the 

nonlinear dynamic response and buckling of laminated cylindrical shells with axial 

shallow grooves. Nonlinear finite element analyses were performed by Kundu et al [82], 

Naidu and Sinha [83] and Guo et al [84]. Patel et al [85, 86] investigated nonlinear 

thermo-elastic buckling characteristics of cross-ply laminated joined conical and 

cylindrical shells. Xu et al. [87] studied Nonlinear stability of double-deck reticulated 

circular shallow spherical shell based on the variational equation of the nonlinear bending 

theory. Panda and Singh [88] studied thermal buckling and post-buckling analysis of a 

laminated composite spherical shell panel embedded with shape memory alloy fibers 

using non-linear finite element methods. Sze and Zheng [89] studied a hybrid-stress solid 

element for geometrically nonlinear laminated shell analyses. Andrade et al [90] and 

Kima et al [91] performed geometrically nonlinear analysis of laminated composite plates 
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and shells using various shell elements. Huang [92] performed nonlinear buckling of 

composite shells of revolution. Ferreira et al [93] conducted a nonlinear finite element 

analysis of rubber composite shells. Material nonlinearity was discussed by Khoroshun et 

al [94,95]. 

Other nonlinear analyses include Chaudhuri [29], Khosravi et al [67], Han et al 

[37], Hsia [96], Wang et al [97], Moitaa et al [98], Jakomina et al. [75], Li and Lin [31], 

and Razzaq and El-Zafrany [ 99].  

 

2.1.5. Shell geometries 

Shells may have different geometries based mainly on their curvature 

characteristics.  In most shell geometries, the fundamental equations have to be treated at 

a very basic level. The equations are affected by the choice of the coordinate system, the 

characteristics of the Lame parameters and curvature [1-4]. Equations for cylindrical, 

spherical, conical and barrel shells can be derived from the equations of the more general 

case of shells of revolution. Equations for cylindrical, barrel, twisted and shallow shells 

can also be derived from the general equations of doubly curved shells. Cylindrical 

shells, doubly curved shallow shells, spherical and conical shells are the most treated 

geometries in research.  

Bespalova and Urusova [100] studied contact interaction between prestressed 

laminated shells of revolution and a flat foundation. Pinto Correia et al [101] investigated 

modeling and optimization of laminated adaptive shells of revolution. Vasilenko et al 

[102] described contact interaction between a laminated shell of revolution and a rigid or 
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elastic foundation. Khoroshun and Babich [103] discussed stability of laminated convex 

shells of revolution with micro-damages in laminate components. Vasilenko et al [104] 

analyzed stresses in laminated shells of revolution with an imperfect interlayer contact. 

Gureeva et al. [105] analyzed an arbitrary loaded shell of revolution based on the finite 

element method in a mixed formulation. Merzlyakov and Galishin [106] investigated 

thermoelastoplastic non-axisymmetric stress-strain analysis of laminated shells of 

revolution. Ye and Zhou [107] analyzed the bending of composite shallow shells of 

revolution. Stability of composite shells of revolution was picked up by Trach [108] and 

Khoroshun and Babich [109].  

Shin et al [110] investigated thermal post-buckled behaviors of cylindrical 

composite shells with viscoelastic damping treatments. Bhaskar and Balasubramanyam 

[111] showed accurate analysis of end-loaded laminated orthotropic cylindrical shells. 

Merglyakov and Gatishin [112] performed analysis of the thermoelastoplastic non-

axisymmetric laminated circular cylindrical shells. Weaver et al [113] investigated 

anisotropic effects in the compression buckling of laminated cylindrical shells. Huang 

and Lu [114], Shen and Xiang [115] studied buckling and postbuckling of cylindrical 

shells under combined compression and torsion. Diaconu et al [116] studied buckling 

characteristics and layup optimization of long laminated composite cylindrical shells 

subjected to combined loads. Fu and Yang [117] and Yang and Fu [118] described 

delamination growth for composite laminated cylindrical shells under external pressure. 

Shen [119] conducted a study on the hygrothermal effects on the postbuckling of 

laminated cylindrical shells. Wang and Dong [120] were interested in local buckling for 

triangular delaminations near the surface of laminated cylindrical shells under 
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hygrothermal effects. Goldfeld and Ejgenberg [121] were interested in linear bifurcation 

analysis of laminated cylindrical shells. Shen [122,123] and Shen and Li [124] analyzed 

postbuckling of axially-loaded laminated cylindrical shells with piezoelectric actuators. 

Panda and Ramachandra [125] studied postbuckling analysis of cross-ply laminated 

cylindrical shell panels under parabolic mechanical edge loading. Rahman and Jansen 

[126] presented a finite element formulation of Koiter's initial post-buckling theory using 

a multi-mode approach for coupled mode initial post-buckling analysis of a composite 

cylindrical shell. 

Studies on buckling of cylindrical shells include Wangi and Xiao [127], Shen 

[128-130], Wang et al [131], Geier et al [132], Weaver et al [133], Wang and Dai [134], 

Zhu et al [135], Patel et al [136], Yang and Fu [137], Hilburger and Starnes [138], 

Semenyuk et al [139], Tafreshi [140], Solaimurugan and Velmurugan [141], Semenyuk 

and, Zhukova [142], Tafreshi [143], Weaver and Dickenson [144], Kere and Lyly [145], 

Vaziri [146], Semenyuk et al [147], Tafreshi [148,149], Babich and Semenyuk [150], 

Biagi and Medico [151], Sheinman and Jabareen [152], Prabu et al. [72], Li and Lin [31], 

and De Faria [153]. 

Wang et al [154] presented a method for interlaminar stress analysis in a laminated 

cylindrical shell. Lin and Jen [155] performed analysis of laminated anisotropic 

cylindrical shell by chebyshev collocation method. Lemanski and Weaver [156] were 

interested in optimization of a 4-layer laminated cylindrical shell. Gong and Ling-Feng 

[157] did experimental study and numerical calculation of stability and load-carrying 

capacity of cylindrical shell with initial dent. Khoroshun and Babich [158] investigated 
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stability of cylindrical shells with damageable components. Alibeigloo [159] performed a 

static analysis of an anisotropic laminated cylindrical shell with piezoelectric layers. 

Goldfeld [160] studied the influence of the stiffness coefficients on the imperfection 

sensitivity of laminated cylindrical shells. Zenkour and Fares [161] picked up the 

problem of thermal bending analysis of composite laminated cylindrical shells. Jinhua et 

al [162] performed variational analysis of delamination growth for composite laminated 

cylindrical shells under concentrated load. Meink et al [163] studied filament wound 

composite cylindrical shells. Solaimurugan and Velmurugan [164] researched 

progressive crushing of stitched glass-polyester composite cylindrical shells.  

Other analyses include those of Sheng and Ye [18],  Li and Shen [21, 25, 26], Shen 

[33, 34], Li [38], Zenkour [39], Shen and Li [41], Zen and Wanji [44], Chaudhuri et al 

[66], Sofiyev et al [ 68], Patel et al [85], Khoroshun et al [94,95], Wang et al [97], Zhu et 

al [135], Seif et al [165], Burgueño and Bhide [166], Belozerov and Kireev [167], 

Alibeigloo and Nouri. [27], Semenyuk and Trach [168], Paris and Costello [169] and 

Movsumov and Shamiev [170]. As can be seen from the above review, cylindrical shells 

received the most attention (as compared with other shell geometries.  

Khare et al [45] presented closed-form thermo-mechanical solutions of cross-ply 

laminated shallow shells. Soldatos and Shu [65] discussed modeling of perfectly and 

weakly bonded laminated plates and shallow shells. Zang et al [171] were interested in 

nonlinear dynamic buckling of laminated shallow spherical shells. Kioua and Mirza [172] 

investigated piezoelectric induced bending and twisting of laminated shallow shells. 

Niemi [173] developed a four-node bilinear shell element of arbitrary quadrilateral shape 
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and applied that to find the solution of static and vibration problems of shallow shells. 

Zarivnyak [174] researched the probability of the critical state of glue joints of a shallow 

laminated shell. Other studies on shallow shells include those of Grigorenko et al [175] 

Matsunaga [50], Wang et al [81], Ye and Zhou [107], Jakomina et al. [75], Xu et al. [87], 

Gupta [176], and Zhu et al [135].  

Conical shells are other special cases of shells of revolution. For these shells, a 

straight line revolves about an axis to generate the surface. Wu et al [177] discussed a 

refined asymptotic theory of laminated circular conical shells. Das and Chakravorty [178] 

suggested selection guidelines of point-supported composite conoidal shell roofs based 

on a finite element analysis. Mahdi et al [179] investigated the effect of material and 

geometry on crushing behavior of laminated conical shells. Goldfeld [180] studied the 

imperfection sensitivity of laminated conical shells. Goldfeld et al [181] performed a 

multi-fidelity optimization of laminated conical shells for buckling. Mahdi et al [182] 

were interested in the effect of residual stresses in a filament wound laminated conical 

shell. Singh and Babu [183] studied thermal buckling of laminated piezoelectric conical 

shells. Wu and Chiu [184] picked up the problem of thermoelastic buckling of laminated 

conical shells. Rezadoust et al [185] investigated the crush behavior of conical composite 

shells. Goldfeld et al [186] presented design and optimization of laminated conical shells 

for buckling. Kosonen [187] described specification for mechanical analysis of conical 

composite shells. Other studies on conical include Patel et al [85, 188-189], and Pinto 

Correia [49].   
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Spherical shells are other special cases of shells of revolution. For these shells, a 

circular arc, rather than a straight line, revolves about an axis to generate the surface. If 

the circular arc is half a circle and the axis of rotation is the circle’s own diameter, a 

closed sphere will result. Smithmaitrie and Tzou [190] discussed actions of actuator 

patches laminated on hemispherical shells. Marchuk and Khomyak [191] presented 

refined mixed finite element solutions of laminated spherical shells. He and Hwang [192] 

investigated identifying damage in spherical laminated shells. Kadoli and Ganesan [193] 

Analyzed thermoelastic buckling of composite hemispherical shells with a cut-out at the 

apex. Saleh et al [194] described crushing behavior of composite hemispherical shells 

subjected to axial compressive load. Other studied on spherical shells include those of 

Zang et al [171], Wu and Lo [19], Xu et al. [87], Panda and Singh [88], and others.  

Tzou et al [195] studied sensitivity of actuator patches laminated on toroidal shells. 

Mitkevich and Kul'kov [196] investigated design optimization and forming methods for 

toroidal composite shells.  

Sai et al [197,198] investigated shells with and without cut-outs. Other studies 

include Latifa and Sinha [199].  

 

2.2. Types of analyses 

Analyses can be dynamic in nature. These include free and transient vibrations, 

wave propagation, dynamic stability, shock and impact loadings and others. These were 

covered in another review article [3]. The types of analyses that this work focuses on are 

static, buckling, post buckling, thermal and hygrothermal, and failure and damage.  
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2.2.1. Static analysis 

 Pinto Correiaa et al [200] described a finite element semi-analytical model for 

laminated axisymmetric shells under static and other loads. Prusty [201] performed linear 

static analysis of composite hat-stiffened laminated shells using finite elements. Park et al 

[202] analyzed laminated composite plates and shells using a shell element. Alijani et al 

[203] studied application of the extended Kantorovich method to the bending of clamped 

cylindrical panels. Santos et al [23] presented a finite element bending analysis of 3D 

axisymmetric laminated piezoelectric shells. Babeshko and Shevchenko [204-206], 

Babeshko [207] and Shevchenko and Babeshko [208,209] discussed elastoplastic 

laminated shells made of isotropic, transversely isotropic and laminated materials. 

Maslov et al [210] presented a method of stressed state analysis of thick-walled 

composite shells. 

Other static analyses include Yuan et al [54], Maksimyuk and Chernyshenko [79], 

Razzaq and El-Zafrany [99], Vasilenko et al [104], Ye and Zhou [107], Tafreshi [140], 

Wang et al [154], Alibeigloo [159], Zenkour and Fares [161], Seif et al [165], Semenyuk 

and Trach [168], Paris and Costello [169], Kioua and Mirza [172], Grigorenko et al 

[175], Mahdi et al [182], Marchuk and Khomyak [191], Saleh et al [194], Alibeigloo and 

Nouri [27],  and Sai et al [197,198].  
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2.2.2. Buckling analysis 

Lee and Lee [211] discussed a numerical analysis of the buckling and postbuckling 

behavior of laminated composite shells. Sai-Ram et al [212] studied buckling of 

laminated composite shells under transverse load. Fan et al [213] investigated creep 

buckling of viscoelastic laminated plates and circular cylindrical shells. Li et al [214] 

performed buckling analysis of rotationally periodic laminated composite shells by finite 

elements. Sofiyev [215] conducted torsional buckling analysis of cross-ply laminated 

orthotropic composite cylindrical shells. Patel et al [216] were interested in thermo-

elastic buckling of angle-ply laminated elliptical cylindrical shells. Hilburger and Starnes 

[217] studied the effects of imperfections of the buckling response of composite shells. 

Rickards et al [218] analyzed buckling of composite stiffened shells.  

Studies on buckling of cylindrical shells include Wangi and Xiao [127], Shen 

[128-130], Wang et al [131], Geier et al [132], Weaver et al [133], Wang and Dai [134], 

Zhu et al [135], Patel et al [136], Yang and Fu [137], Hilburger and Starnes [138], 

Semenyuk [139], Tafreshi [140], Solaimurugan and Velmurugan [141], Semenyuk and, 

Zhukova [142], Tafreshi [143], Weaver and Dickenson [144], Kere and Lyly [145], 

Vaziri [146], Semenyuk et al [147], Tafreshi [148,149], Babich and Semenyuk [150], 

Biagi and Medico [151], Sheinman and Jabareen [152], Prabu et al. [72], Li and Lin [31], 

and De Faria [153]. 

Other buckling analyses include Matsunaga [50], Shen [64], Sofiyev et al. [68], 

Wang et al [81], Huang [92], Wang et al [97], Weaver et al. [113], Huang and Lu [114], 

Shen and Xiang [115], Diaconu et al [116], Wang and Dong [120 ], Hilburger and 
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Starnes [138], Semenyuk et al [139], Tafreshi [140], Zang et al [171], Goldfeld et al [181, 

186], Singh and Babu [183], Wu and Chiu [184], Kadoli and Ganesan [193], and Pinto 

Correiaa [200].  

 

2.2.3. Postbuckling analysis 

Shin et al [110] discussed thermal postbuckled behavior of cylindrical composite 

shells. Shen [219,220] discussed the same problem with piezoelectric actuators and 

thermal-dependant properties. Kim et al [221] presented an 8-node shell element for 

postbuckling analysis of laminated composite plates and shells. Kundu and Sinha [222] 

analyzed postbuckling of laminated shells. Kundu et al [223] performed postbuckling 

analysis of smart laminated doubly curved shells. Xie and Biggers [224] conducted 

postbuckling analysis with progressive damage modeling in tailored laminated plates and 

shells with a cutout. Merazzi et al. [225] employed implicit finite element methods to 

analyze postbuckling behavior of shell-wised tools. 

Other studied on postbuckling analysis include Shen [33, 34, 40, 64, 119, 122, 123 

128-130],  Li and Shen [21, 25, 26], Li [38], Shen and Xiang [115], Shen and Li [41, 

124], Tafreshi [140, 143, 144], Semenyuk and Zhukova [142], Kere and Lyly [145], 

Sheinman and Jabareen [152], Patel et al [188, 189], Lee and Lee [211], Rahman and 

Jansen [126], Li and Lin [31], Panda and Singh [85], Panda and Ramachandra [125],  and 

Sai-Ram et al [212].   
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2.2.4. Thermal and hygrothermal loading 

Galishin [226] and Babeshko and Shevchenko [227, 205] performed analysis of 

the axisymmetric thermoelastoplastic state of laminated transversally isotropic shells. 

Swamy and Sinha [228] investigated nonlinear analysis of laminated composite shells in 

hygrothermal environments. Babeshko [204] and Babeshko and Shevchenko [229] were 

interested in thermoelastoplastic state of flexible laminated shells under axisymmetric 

loading. Cheng and Batra [230] showed thermal effects on laminated composite shells 

containing interfacial imperfections. Kewei [231] conducted weak Formulation Study for 

thermoelastic analysis of thick open laminated shell. Ghosh [232] studied hygrothermal 

effects on the initiation and propagation of damage in composite shells. Saha and 

Kalamkarov [233] presented a micromechanical thermoelastic model for sandwich 

composite shells. El-Damatty et al [234] performed thermal analysis of composite 

chimneys using finite shell elements. Roy et al. [235] developed an improved shell 

element for smart fiber reinforced composite structures under coupled piezothermoelastic 

loading. Also, Kulikov and Plotinkova [236] constructed a seven parameter geometrically 

exact shell element to study coupled problem of thermopiezoelectricity in laminated 

plates and shells. 

Studies that treated thermal and/or hygrothermal effects include those of Li and 

shen [21, 25, 26], Li [38], Shen [36, 37, 58, 103], Khare et al [45], Matsunaga [50], Oh 

and Cho [51], Galishin and Shevchenko [80], Kundu et al [82], Naidu and  Sinha [83], 

Wang et al [91, 131], Merzlyakov and Galishin [106], Shin [110], Wang and Dong [120], 

Patel et al [136, 188, 189, 216], Shevchenko and Babeshko [209], Babeshko [208], 

Zenkour and Fares [161], Wang and Dai [134], Zhu et al [135], Singh and Babu [183], 
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Wu and Chiu [184], Kadoli and Ganesan [193],Panda and Singh [88], and in addition to 

articles that can be found on the dynamic problems in the review by Qatu [3].  

 

2.2.5. Failure, delamination and damage analyses 

Zhang et al [237] studied progressive failure analysis for advanced grid stiffened 

composite plates/shells. Ikonomopoulos and Perreux [238] investigated reliability of 

laminates through a damage tolerance approach. Khoroshun and Babich [239] discussed 

stability of plates and shells made of homogeneous and composite materials subject to 

short-term microdamage. Zozulya [240] studied laminated shells with debonding between 

laminas in temperature field.  Larsson [241] discussed discontinuous shell-interface 

element for delamination analysis of laminated composite structures. Mahdi et al [242] 

performed an experimental investigation into crushing behavior of filament-wound 

laminated cone-cone intersection composite shell. Huang and Lee [243] investigated the 

static contact crushing of composite laminated shells. Wagner and Balzani [244] 

performed simulation of delamination in stringer stiffened fiber-reinforced composite 

shells. 

Other studies on failure of composite shells include those of Galishin [226], Xie 

and Biggers [224], He and Hwang [192], Khoroshun et al [94, 95], Khoroshun and 

Babich [103, 109, 158, 239], Mahdi et al [179], Rezadoust [185], Saleh et al [194], 

Solaimurugan and Velmurugan [164], and Ghosh [232].  
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2.2.6. Other Analyses 

Morozov [245] conducted a theoretical and experimental analysis of filament 

wound composite shells under compressive loading. Hossain et al [246], Kim et al [247] 

and Szea et al [248] presented a finite element formulation for the analysis of laminated 

composite shells. Wu and Burguen [249] studied an integrated approach to shape and 

laminate stacking sequence optimization of composite shells. Balah and Al-Ghamedy 

[250] discussed finite element formulation of a third order laminated finite rotation shell 

element. Trach et al [251] investigated stability of laminated shells made of materials 

with one plane of elastic symmetry. Kabir et al [252] presented a triangular element for 

arbitrarily laminated general shells. Kalamkarov et al [253] delivered an asymptotic 

model of flexible composite shells of a regular structure. Haussya and Ganghoffer [254] 

investigated modeling of curved interfaces in composite shells. Roque and Ferreira [255] 

described new developments in the radial basis functions analysis of shells.  

 

2.3. Material complexity 

Material complexity in composites occurs in various ways.  Composite shells can 

have active or piezoelectric layers. They can also be braided or made of wood or natural 

fibers or a combination of materials.   

 

2.3.1. Piezoelectric shells 

Ren and Parvizi-Majidi [256] presented a model for shape control of cross-ply 

laminated shells using a piezoelectric actuator. Bhattacharya et al [257] and Zallo and 
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Gaudenzi [258] presented finite element models for laminated shells with actuation 

capability. Pinto Correia et al [259] conducted an analysis of adaptive shell structures 

using a refined laminated model. Bhattacharya et al [260] investigated smart laminated 

shells and deflection control strategy. Xue [261] studied effective dielectric constant of 

composite shells.  

Other studies on piezoelectric shells include Santos et al [22], Kioua and Mirza 

[172], Shen [115, 119, 122 ], Alibeigloo [159], Alibeigloo and Nouri [27], Kulikov and 

Plotnikova [236], Singh and Babu [183], as well as others that dealt with dynamic 

response [3].   

 

2.3.2. Other materials  

Picha et al [262] studied composite polymeric shells. Yan et al [263] investigated 

post-tensioned composite shells for concrete confinement. Lopez-Anido et al [264] 

studied repair of wood piles using prefabricated polymer composite shells. Burgueño and 

Bhide [166] discussed shear response of concrete-filled composite cylindrical shells. 

Other studies on concrete shells include Ferreira [43].  

 

2.4. Structural complexity 

Structural complexity occurs when the geometry or boundary conditions of the 

shells deviate from the classical shells described earlier. These include stiffened shells, 

shells with internal boundaries from cracks, imperfect shells as well as other types of 

complexities. 

http://www.springerlink.com/content/?Author=G.+M.+Kulikov
http://www.springerlink.com/content/?Author=V.+Plotnikova
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2.4.1. Stiffened shells 

Janunky and Ambur [265] demonstrated a design optimization process while 

investigating the local buckling behavior of stiffened structures with variable curvature.  

Optimum design of stiffened cylindrical shells with added T-rings subjected to external 

pressure was also performed by Bushnell [266]. The reliability of a postbuckled 

composite isogrid stiffened shell structure subjected to a compression load was studied by 

Kim [267]. Zeng and Wu [268] performed a post-buckling analysis of stiffened braided 

cylindrical shells subjected to combined external pressure and axial compression loads.  

For the same combined loading, Poorveis and Kabir [269] analyzed the static buckling of 

orthotropic stringer stiffened composite cyclindrical shells.  The postbuckling behavior of 

stringer stiffened panels by using strip elements was determined by Mocker and 

Reimerdes [270]. Bisagni and Cordisco [271,272] tested stiffened carbon composite 

stringer-stiffened shells in the postbuckling range until failure.  Rao [273] and Rickards et 

al [218] used finite elements for buckling and vibration analysis of laminated composite 

stiffened shells.  Prusty [201] used the finite element method to perform a linear static 

analysis of composite hat-stiffened laminated shells.  Bai et al [274] performed a 

numerical analysis using a finite element method to investigate the buckling behavior of 

an advanced grid stiffened structure.  Kidane et al [275] developed an analytical model to 

study the global buckling load of grid stiffened composite cylinders.  De Vries [276] used 

a hierarchical method to analyze localized buckling of thin-walled stiffened or 

unstiffened metallic and composite shells. Accardo et al [277] discuss the design of a 

combined loads test machine and test fixture to perform experimental investigations on 
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curved reinforced metallic and composite stiffened panels.  Linde et al [278] discussed 

the development of a virtual test platform used for parametric modeling and simulation of 

stiffened test shells to study the static behavior in the buckling and postbuckling range.   

Park et al [202] and Patel et al [ 279] used shell elements to perform both linear and 

dynamic analysis of laminated stiffened composite shells.  An optimization design 

procedure based on surrogate modeling of stiffened composite shells was presented by 

Rikards et al [280].  Using the finite element method, Wong and Teng [281] investigated 

the buckling behavior of axisymmetric stiffened composite shell structures and Apicella 

et al [282] studied the behavior of a stiffened bulkhead subjected to ultimate pressure 

load.  Chen and Guedes Soares [283] modeled ship hulls as stiffened composite panels to 

perform a strength analysis under sagging moments. Rais-Rohani and Lokits [284] 

conducted an optimization study to study reinforcement layout and sizing parameters of 

composite submarine sail structures.  Wu et al [285] conducted an experimental 

investigation to study the behavior of grid stiffened steel-concrete composite panels 

under a buckling load.  Chen et al [286] used a nonlinear finite element method to study 

the thermal mechanical behavior of advanced composite grid stiffened shells with multi-

delaminations. The finite element method was used by Chen and Xu [287] and by Prusty 

[288] to study the buckling and postbuckling response of doubly curved stiffened 

composite panels under general loading.  Sahoo and Chakravorty [289] used finite 

elements to solve a bending problem of a composite stiffened hypar shell subjected to a 

concentrated load. Zhang et al [290] and Lu et al [291] performed a stability analysis of 

advanced composite grid stiffened shells. A buckling load analysis of composite grid 

stiffened structures was investigated by the finite element method by He et al [292].  
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Progressive failure analysis of composite laminated stiffened plates using a finite strip 

method for non-linear static analysis was performed by Zahari and El-Zafrany [293]. 

Studies on stiffened composite shells include Prusty [201], Goldfeld [160], Zhang 

et al [237], Wagner and Balzani [244], and others on dynamic analysis [3].    

 

2.4.2. Shells with cutouts 

Several recent studies have focused on various composite shell structures with 

cutouts.  Hillburger and Starnes [138] and Hillburger [294] performed numerical and 

experimental studies to determine  the effects of unreinforced and reinforced cutouts in 

composite cylindrical shells subjected to compression loading.  Li et al [295] performed a 

three-dimensional finite element analysis to study the buckling response of sandwich 

composite shells with cutouts under axial compression.  The principle of minimum 

potential energy was used by Madenci and Barut [296] to investigate the effects of an 

elliptical cutout in a composite cylindrical shell subjected to compression. Nanda and 

Bandyopadhyay [297] looked at the nonlinear transient responses from static and 

dynamic analyses of composite cylindrical and spherical shell laminates with cutouts.  

The finite element method was used to study the bending behavior of laminated 

composite shells without a cutout [197] and with a central circular cutout [198]. Buckling 

and post-buckling due to internal pressure and compression loading of composite shells 

with various size cutouts was investigated through the finite element method by Tafreshi 

[143]. Xie and Biggers [224] performed analysis on tailored laminated plates and shells 

with a central cutout subjected to compressive buckling loads. Other studies include 

Kadoli and Ganesan [193] and Hilburger and Starnes [138]. 
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2.4.3. Imperfect shells 

Starnes and Hilburger [298] conducted an experimental and analytical study to 

investigate the effects of initial imperfections on the buckling response of graphite-epoxy 

cylindrical shells. Arbocz and Hillburger [299] used a probability-based analysis to 

investigate section properties such as geometric imperfections to determine more accurate 

buckling-load “knockdown factors”.  Biagi and Perugini [300] investigated the buckling 

behavior of the front composite skirt using linear and nonlinear finite element analysis to 

study the relationship between various shapes of geometrical imperfections and 

amplitudes and failure modes. Bisagni [301] studied the buckling and post-buckling 

characteristics of carbon composite cylindrical shells with geometric imperfections under 

axial compression using eigenvalue analysis.  Carvelli et al [302,303] performed a non-

linear buckling analysis to study the geometric imperfections of composite shells in an 

underwater sea environment. Hilburger and Starnes [304,305] investigated the effects of 

imperfections such as shell-wall thickness variations, imperfections due to composite 

fabrication, shell-end geometric imperfections, and nonuniformly applied end-loads, on 

the buckling and post-buckling response of un-stiffened thin-walled graphite-epoxy 

cylindrical shells. Jayachandran et al [306] also investigated the postbuckling behavior of 

imperfect thin shells by using secant matrices with the finite element method to study 

postbuckling behavior of thin composite shells with initial imperfections. Kere and Lyly 

[145] considered geometric shape imperfections and demonstrated that the best 

numerical-experimental correlation was achieved with diamond shape imperfections.  

Rahman and Jansen [126] investigated imperfection sensitivity of composite cylindrical 
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shells under axial compression using a finite element method.  Tafreshi and Bailey [308] 

investigated the effects of combined loading on imperfect composite shell structures. 

Wardle and Lagace [308] compared experimental and numerical computations of the 

buckling response from transversely loaded composite shell structures.  Other studies on 

imperfect shells include Goldfeld [160, 180], Vasilenko [102], Cheng and  Batra [230], 

Shen and Li [41], Wang and Zhong [20], and Hilburger and Starnes [217]. 

 Vasilenko [87] studied contact interaction between a laminated shell of 

revolution and a rigid or elastic foundation.  Other studies include Abouhamze et al 

[309]. 

 

2.5. Conclusions 

It is interesting to see that despite advances made in computational power, 

researchers avoided in general usage of 3D theory of elasticity. Experience shows that 

extensive usage of 3D elements in practical problems is not feasible even with advanced 

computers. Researchers looked for, developed and used thick shell theories to solve 

engineering problems.  Finite element is the most used method in the analysis. Its ability 

to treat general boundary conditions, loading and geometry have certainly attributed to its 

popularity.  

Cylindrical shells are still the subject of research of most recent articles. Doubly 

curved shallow shells have also received considerable interest. These shells can be 

spherical, barrel, cylindrical, or other shape.  
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Complicating effects of various kinds have received considerable interest. The use 

of piezoelectric shells necessitated by various applications and certain advanced materials 

resulted in considerable literature in the field. Other complicating effect of stiffened 

shells received some attention. 

Looking at recent innovations in the area of composite plates, authors think that it 

is a matter of time before these composites start making strong presence in research on 

shells. Areas of innovation include the use of natural fiber, single-walled and multi-

walled carbon nano tubes, varying fiber orientation (both short and long fibers) as we as 

others. Such innovation are becoming more necessary as composite materials are required 

to deliver simultaneously structural functions (strength, stiffness, damping, toughness, … 

) and non-structural ones (thermal and electrical conductivity). Both modeling and testing 

of such composites can be a corner-stone of future research on composite shells. 
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CHAPTER 3 

VIBRATION OF DOUBLY CURVED SHALLOW 

SHELLS WITH ARBITRARY 

BOUNDARIES 

 
 

A shell is a three dimensional body confined by two parallel (unless the thickness 

is varying) surfaces. The distance between those surfaces is small compared with other 

shell parameters. Shell structures constitute a major component of today’s aerospace, 

submarine, automotive and other machine or structural elements. They can be used for 

aerodynamic, aesthetic and/or other reasons. From a structural viewpoint, shells are 

considerably stiffer than flat plates. In addition, their theory is reasonably more complex 

than that of a plate. This is a direct result of the coupling between extensional and 

bending stiffness parameters that a shell has and a flat plate does not. 

Shallow shells are shells that are open and have large radii of curvatures compared 

with other shell parameters (e.g. length and width). They can have circular, rectangular, 

triangular or any other planform. They can be singly-curved (i.e. cylindrical) or doubly-

curved (e.g. spherical).  They can also have their principal radii of curvature not align 

with the geometric boundaries, introducing a radius of twist (e.g. turbomachinery blades).  

Unlike plates, where there is a widely accepted plate theory, shells can be modeled 

relatively accurately using many theories. In this work, we will use a Donnel-Mushtari 
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theory [1-5] which is accurate for shallow shells and will be sufficient for the structures 

treated here. It is also accurate for higher frequencies of deeper shells. The literature on 

shallow shell vibration has been the subject of various articles [6-9]. Leissa and Narita 

[10] and Narita and Leissa [11] studied vibrations of completely free and corner point 

supported shallow shells of rectangular planform. Also, Liew and Lim [12-14] studied 

vibration behavior of doubly curved shallow shells with rectangular planform as well as 

curvilinear planform including those of rounded corners. Other detailed vibration studies 

include cantilevered shallow cylindrical [15, 16], doubly-curved [17] and twisted [18] 

shells of rectangular planform. Qatu and Leissa [19] studied shallow shells with two 

adjacent edges clamped and the others free. Qatu [20] showed mode shape analysis of 

laminated composite shallow shells. Effects of edge constraints upon the frequencies of 

shallow shells having three free boundaries were also investigated [21]. Clear differences 

between frequencies obtained for shallow shells and those for plates are outlines in a 

recent publication [22]. Lim et al [23] and Liew et al [24, 25] analyzed the vibratory 

characteristics of cantilevered conical shallow shells of initial twist. They used a special 

version of the Ritz method [26, 27]. Vibration studies on completely free shallow shells 

having triangular and trapezoidal planforms and cantilevered shallow shells with right 

triangular and trapezoidal planforms were the subject of two studies [28-29].  

This chapter presents the first comprehensive and accurate study of vibrations of 

shallow thin shells for all combinations of practical boundary conditions. These can be 

directly used by acoustic and vibration engineers for various applications (structures, 

automotive, submarine, aerospace, … ). They can also be used for benchmarking of 

researchers in the field. In this paper, the Ritz method is used to solve for natural 
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vibrations of shallow shells with arbitrary boundary conditions using the same algorithm. 

Thin shallow shell theory is used in the analysis and natural frequencies are presented for 

various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal 

shells. 

 

3.1. Basic equations of thin shallow shells 

The middle surface of a shallow shell of arbitrary curvature is depicted in Fig. 3.1 

In terms of the rectangular coordinates shown there, its equation is 

2 2

,
2 2x xy y

x xy yz
R R R

            (1) 

where xR  and yR  are radii of curvature in the x and y directions, respectively, as shown 

in Fig. 3.1, and xyR  is the corresponding coefficient describing the twist of the surface. 

This analysis will be limited to the case when xR , xyR , and yR  are constants. In this case, 

Eq. (1) represents a quadratic surface. Figure 3.2 shows a shallow shell having 

boundaries which, when projected upon the xy-plane (i.e., its planform), are rectangular. 

For analysis it is then usually convenient to choose the xy-coordinates to be parallel to 

the boundaries. However, if the x and y axes were rotated about the z-axis, it is possible 

to orient them so that xyR  = ∞ in (1). Then x and y are principal coordinates, and the new 

values of xR  and yR  are principal radii of curvature. Consider the shell segment shown in 

Fig. 3.3. It may be circular cylindrical, with xR  = R, and yR  = xyR  = ∞, spherical, with  
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Figure 3.1: Shallow shell with rectangular planform 

 

xR  = yR  = R and xyR  = ∞, hyperbolic paraboloidal with xR  = yR  = R and xyR  = ∞, or 

other.  

Assuming the Kirchhoff hypothesis for the behavior of the normal to the shell 

midsurface [1-3], midsurface strains and curvature changes can then be written as: 

o o o o
0x 0 y

x y

u w v w,
x R y R

 
 

 
     

2 2 2
o o o 0 0 0

0 xy x y xy2 2
xy

v u 2w w w w, , ,
x y R x y x y

    
   

    
        


        (2) 

where 0u , 0v  and 0w  are midsurface displacements in the x, y and z directions. Strain at 

any point can be written as 
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x 0 x x

y 0 y y

xy 0 xy xy

z
z
2z

  

  

  

 

 

           (3) 

 

Figure 3.2: Non-dimensional coordinates for a CSFF shallow shell. 

 

Consider an infinitesimal element of the shell. It will have stress resultants (forces 

per unit length) xN , yN , and xyN  tangent to its midsurface called "membrane forces" 

acting along its edges as well as moment resultants (moments per unit length) xM , yM , 

and xyM . In applying the equilibrium equations including the transverse shearing forces, 

and performing some mathematical substitutions, the resulting equations of motion are 

[1] 
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Figure 3.3: Types of curvatures for shallow shells on rectangular planforms : spherical 
( / 1x yR R  ), circular cylinder ( / 0x yR R  ) and hyperbolic paraboloidal 
( / 1x yR R   ) shallow shells. 

 

2 2
xy y xyx o o

y2 2

N N NN u vp , p ,
x y t y x t

    
 

     
         

2 22 2
xy y xy yx x o

n2 2 2
xy x y

2N N M MN M w2 ( p )
R R R x y x y t

  


    

 
          
            (4) 

For an isotropic shell material the strains are related to the stresses by 
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   
1 1, , ,xy

x x y y y x xyE E G


                                                  (5a)   

or          
 2 2, , ,

2 11 1x x y y y x xy xy
E E E

       
 

    
 

                 (5b) 

where E is modulus of elasticity (Young’s modulus),   is Poisson’s ratio, and G is the 

shear modulus, related to E and   by ( / 2(1 )G E   ). The resultant forces are obtained by 

carrying the integration of stresses over the cross-section. The bending moments are 

obtained by integrating the moments of the in-plane stresses over the thickness. That is, 

h / 2

x x
h / 2

N dz


 
 ,   

h / 2

y y
h / 2

N dz

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 ,   

h / 2

xy xy
h / 2

N dz

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h / 2

x x
h / 2

M zdz

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,   

h / 2

y y
h / 2

M zdz

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,   

h / 2

xy xy
h / 2

M zdz


 
                                       (6a) 

The moment resultant can be written as  

 x x yM D   
   ,    y y xM D   

   ,    1xy xyM D              (6b) 

where  3 2/12 1D Eh                                                                                          (7) 

is the flexural rigidity of the shell.  All the needed parts of the classical shallow shell 

theory are present, and they may be combined to obtain the desired form of the equation 

of motion.  

For the case of coordinates of principal curvature, the resulting equations written in 

terms of displacements in matrix form, are [3] 
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    (8) 

where xp  and yp , are the tangential components of exciting force (per unit surface area) 

acting in planes parallel to the xz- and yz-planes, respectively, and the ijL  are differential 

operators given by: 

2 2 2 2
4

11 22 332 2 2 2 2 2

1 1 1 2 1, , ,
2 2 12x x y y

hL L L
x y x y R R R R

       
         
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2

12 13 13
1 1 1, ( ) , ( ) ,

2 x y x y

L L L
x y R R x R R y

     
    

   
   (9) 

If one is using an energy approach (e.g. the Ritz method), the total potential energy 

is due to strain energy. In a deforming shell it is max s bPE PE PE  , where sPE  arises 

from midsurface stretching and bPE  is due to bending [3], where 

2
02

0 0 0 02

1 [( ) 2(1 )( )] ,
2 1 4

xy
s x y x y

EhPE dA


    


    
    (10) 

with 0x , 0 y , and 0 xy , given by (5), and A is the area of the shell midsurface. The 

potential energy from bending is 

2 21 [( ) 2(1 )( )] ,
2b x y x y xyPE D dA               (11) 

The kinetic energy of the vibrating shell is 
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2 2 2
max

1 [( ) ( ) ( ) ] ,
2

u v wKE h dA
t t t


  

  
         (12) 

It is worth noting that the above energy expressions are written with E, h, ν, D, and 

ρ in the integrands. This will enable us to treat shells of variable thickness and/or non-

homogeneous material straightforwardly.  

The boundary terms for the boundaries with x =constant are 

 2

1

0 0

0
0 0

0
0 0

0
0 0 0

0 0

0 0

0 0

0 0 0

x x

xy xy
xy xy

y y

xy xy
x x

y
x x xy y

N N or u

M M
N N or v

R R

M M
Q Q or w

y y
wM M or M w
x

  

   
          

   

    
       

    


   



   (13) 
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Similar equations can be obtained for y = constant. It is clear that four possible 

combinations at each edge can be made for each of the classical boundary condition 

known for plates (simply supported, clamped, and free). For the analysis done here, 

clamped means completely clamped (inplane displacements constrained), free means 

completely free (inplane displacements are also free) and simply supported boundaries 

are shear diaphragm boundaries defined as : 

0 00, 0, 0, 0x xN v w and M          (14) 

 

3.2. Ritz analysis 

The Ritz method with algebraic polynomial displacement functions is used here to 

solve the vibration problem for shallow shells having different boundary conditions. 

Convergence studies are made which demonstrate that accurate results (natural 

frequencies) can be obtained with this analysis. The effects of shell curvature and 

boundary conditions upon the natural frequencies and mode shapes are studied. 

For free vibrations of a shallow shell having the rectangular planform, 

displacements are assumed as 2 /a h D   

0 0 0( , , ) ( , )sin , ( , , ) ( , )sin , ( , , ) ( , )sin ,u x y t U x y t v x y t V x y t w x y t W x y t          (15) 

Algebraic functions may be used as trial functions. The displacement trial 

functions, in terms of the nondimensional coordinates ξ and η, are taken as: 

0 0 0 0 0 0

I J K L M N
i j k m n

ij k mn
i i j j k k m m n n

U( , ) , V( , ) , W( , ) ,
     

                           (16) 
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 where ξ  = x/a  and  η = y /b. 

The Ritz method requires satisfaction of geometric (forced) boundary conditions 

only.  One can solve for many boundary conditions with the same analytical procedure by 

using a suitable selection of the value 0 0 0 0 0, , , ,i j k l m  and 0n . Vibration problems for 

shallow shells having the boundary conditions XXFF, where X can be simply supported 

(S), clamped (C), or free (F) can be solved. One should keep in mind that for shallow 

shells there are four types of configurations for each of the simply supported, free and 

clamped edge conditions.   

For other types of boundary conditions, one can use springs at the free ends. These 

are springs that cover the whole edge and can actually be functions of the boundary 

coordinates. These springs will be taken as constants along the boundary at which they 

are acting. Three linear springs and one rotational spring are used at each of the two 

edges at x = a and at y =b. For the free edge at x = a, a linear spring in the vertical 

direction (with a spring constant zk ) can be taken to restrain motion vertically; another 

linear spring is used to restrain motion in the x direction (with a spring constant xk ); a 

third linear spring can be used to restrain motion in the tangential direction (with a spring 

constant yk ); and finally a rotational spring about the edge parallel to the y axis can be 

used (with a spring constant k ). The strain energy of these springs is: 
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Table 3.2: Frequency parameters 2 /a h D   of shallow spherical shells, 
/ 1x yR R  , a/ b = 1, a / h = 20, ν = 0.3. 

B.C a/ R = 0.5 a/ R = 0.2 
FFFF 13.42 19.39 32.53 34.98 13.46 19.56 25.99 34.85 
SFFF 6.551 16.25 25.47 31.04 6.629 15.34 25.40 27.08 
CFFF 4.722 8.390 22.09 28.80 3.754 8.492 21.53 28.26 
SSFF 3.332 17.29 24.64 48.04 3.367 17.32 20.79 39.71 
CSFF 6.387 19.71 27.98 52.49 5.566 19.35 25.47 44.64 
CCFF 11.14 23.83 32.74 57.43 7.894 23.90 27.92 49.27 
SFSF 11.12 15.91 42.19 47.47 10.07 16.10 38.89 39.59 
CFSF 17.04 26.19 50.89 52.18 15.63 21.68 41.84 49.95 
SSSF 13.14 42.40 44.25 64.32 12.22 30.50 41.85 60.14 
CSSF 23.52 44.97 55.57 72.75 18.01 33.76 52.05 65.24 
CCSF 21.90 50.00 54.17 77.69 18.68 38.58 52.19 72.13 
CFCF 36.90 38.37 55.08 62.98 25.30 28.67 45.53 61.34 
SCSF 13.67 44.40 47.38 64.32 12.95 35.75 42.26 64.09 
CSCF 37.70 49.75 65.08 74.46 26.34 38.07 63.08 68.01 
CCCF 37.96 55.15 65.22 83.90 26.62 42.71 63.56 77.64 
SSSS 38.01 59.10 59.10 85.32 23.70 51.04 51.04 80.02 
CSSS 41.28 61.27 67.58 92.35 27.32 53.32 60.17 87.13 
CCSS 44.57 69.21 69.78 98.39 30.64 61.88 62.36 93.66 
CSCS 46.87 64.10 76.80 100.07 32.47 55.41 70.37 95.06 
CCCS 50.51 72.22 78.62 106.22 35.51 64.76 72.13 101.40 
CCCC 58.04 80.84 80.92 112.54 40.26 74.17 74.43 108.66 
 

2
2 2 2 0
0 0 0

0

( , )1 ( , ) ( , ) ( , )
2

y b

x a x y z
y

w a y
U k u a y k v a y k w a y k dy

x



 



   
     

   


   (17) 

This is to be added to the expression for maxPE .  Similar treatment can be made for 

springs at y =b. 

For solving the free vibration problem, the displacement functions are substituted 

into the energy functional equations in order to get an expression for the maximum strain 

energy ( maxPE )  and maximum kinetic energy ( maxKE ). The Ritz method requires 
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minimization of the functional ( max maxT U ) with respect to the coefficient  ,ij kl   and 

mn  which can be accomplished by setting: 

max max
0 0 0 0

max max
0 0 0 0

max max
0 0 0 0

( )
0, , 1,..., ; , 1,..., ;

( )
0, , 1,..., ; , 1,..., ;

( )
0, , 1,..., ; , 1,...,

ij

k

mn

KE PE
i i i I j j j J

KE PE
k k k K L

KE PE
m m m M n n n N

 
    



 
    



 
    

   (18) 

which yields a total of 0 0 0 0 0( 1) ( 1) ( 1) ( 1) ( 1)I i J j K k L l M m                

0( 1)N n   simultaneous, linear, homogenous equations in an equal number of 

unknowns ,ij kl   and  mn . Those equations can be described by {K-  2  M} a = 0; 

where K and M are the stiffness and mass matrices, respectively;  is the frequency 

parameter, and a is the vector of unknown coefficients ,ij kl   and  mn . 

The determinant of the coefficient matrix is set equal to zero which will yield a set 

of eigenvalues. Substituting each eigenvalue back into (18) yields the corresponding 

eigenvector (amplitude ratio) in the usual manner. The mode shape corresponding to each 

frequency can be determined by substituting the eigenvector back into the displacement 

functions. 

 

3.3. Vibrations of shallow shells 

Symmetry of the problem results in 21 combination of classical boundary 

conditions for plates [30]. Such symmetry exists here for spherical and hyperbolic 



www.manaraa.com

 

83 

paraboloidal shells (assuming only one version for each of the four possible combinations 

depending on inplane displacement constraints). This symmetry is mostly lost for 

cylindrical shells yielding different boundary conditions if yR  =  instead of xR . The 

symmetry is retained, however, for FFFF, SSSS, CCCC, SSFF, CCSS, CCFF boundaries 

and whether yR  =  or xR  = , the same results are obtained. 

A shell of square planform (a=b) is selected with a thickness being 20th of that of 

the side length. Poisson’s ratio of 0.3 is selected. Three types of curvature are studied; 

spherical, cylindrical and hyperbolic paraboloidal. For each of these curvatures, two 

curvature values are studied; one with the radius five times the side length and the second 

with the side radius twice the length. Table 3.1 shows the results for the 21 boundary 

conditions of plates. They are reported here as a reference and to benchmark our results 

against those of Ref. [30] who obtained exact solutions for 6 of the 21 boundary 

conditions (two opposite edges being simply supported) and used the Ritz method with 

beam functions for the remaining 15 boundary conditions. The 49-term results reported 

here are showing better (smaller) results than those of the 36-term solutions presented in 

[30]. Ill conditioning is observed here if a higher number of terms is selected in the 

present analysis. 

Table 3.2 shows the 147 term solution for a spherical shell with curvature ratios 

(a/R) of 0.2 and 0.5. Note here that both the 75-term solutions and 108-term solutions 

were obtained and convergence is observed to be within 1% for almost all the reported 

results. In many cases convergence is observed to the third significant figure. Only four 
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Table 3.3: Frequency parameters 2 /a h D    of shallow cylindrical shells, xR  = , 
a/ b = 1, a / h = 20, ν = 0.3. 

B.C. a/Ry = 0.5 a/Ry = 0.2 
FFFF 13.44 21.28 28.12 34.69 13.46 20.12 24.77 34.79 
SFFF 6.640 19.43 25.80 26.10 6.643 15.76 25.45 26.01 
CFFF 5.164 8.594 24.65 28.10 3.806 8.526 21.98 27.29 
SSFF 3.347 17.93 22.68 40.57 3.365 17.61 19.79 38.57 
CSFF 6.779 19.53 28.28 45.24 5.621 19.16 25.35 43.42 
CCFF 8.440 25.57 29.56 51.11 7.218 24.30 27.08 48.21 
SFSF 13.10 16.41 37.22 43.26 10.29 16.18 36.80 39.67 
CFSF 18.64 21.00 40.21 53.51 15.33 20.66 39.98 49.68 
SSSF 14.78 29.57 44.94 61.91 12.30 28.03 41.88 59.53 
CSSF 19.73 33.15 54.56 64.20 17.42 31.42 52.08 64.02 
CCSF 20.08 39.72 54.05 74.34 18.13 36.59 52.47 71.62 
CFCF 25.12 26.85 44.33 64.01 22.36 26.43 43.59 61.59 
SCSF 15.79 36.41 45.24 64.32 13.34 33.60 42.36 63.59 
CSCF 25.96 37.66 65.26 66.90 23.67 36.16 63.21 66.65 
CCCF 26.75 43.68 66.05 77.50 24.34 40.53 62.56 76.47 
SSSS 25.48 49.61 55.84 80.46 20.78 49.39 50.44 79.19 
CSSS 29.05 52.11 64.19 87.56 24.60 51.75 59.57 86.50 
CCSS 34.16 61.76 66.44 94.71 28.45 60.83 61.66 93.05 
CSCS 33.69 55.30 73.85 95.62 29.63 54.99 69.69 94.48 
CCCS 37.38 63.67 76.00 99.98 32.87 63.48 71.64 100.78 
CCCC 46.08 74.02 78.10 109.68 37.56 72.59 72.66 108.41 

 

 

significant results are reported here for all the results. The boundary conditions of SFFF, 

CFFF, SSFF, CSFF, CCFF were among the fastest converging with accuracy achieved up 

to the third significant results for the first four frequency parameters. Another observation 

is made here that boundaries where the support is restrained using springs (at x=a and y = 

b) tend to yield ill-conditioned matrices faster. It should be mentioned here that many of 

these boundary conditions yields zero frequencies corresponding to rigid body modes. 

These are not reported. 
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Compare the results obtained for a spherical shallow shell with a curvature ratio of 

0.2 with those obtained for flat plates. It is clear that the spherical curvature, although 

extremely shallow, had a considerable effect on some frequencies for most boundary 

conditions. For example,  the third mode of the extremely shallow shell having FFFF 

boundary is 6.4 % higher than plate. The other three modes seem to vary within 1%. For 

a curvature ratio of 0.5, still a shallow shell, the third mode of FFFF boundary condition 

shows 34 % higher frequency than that of a plate. Still, even at this curvature the other 

three frequencies varied very little (within 1%) from that of a plate. 

Table 3.4: Frequency parameters 2 /a h D   of shallow cylindrical shells, yR = , 
a/ b = 1, a / h = 20, ν = 0.3. 

B.C a/Rx = 0.5 a/Rx = 0.2 
FFFF 13.44 21.29 28.12 34.69 13.46 20.12 24.77 34.79 
SFFF 6.554 14.96 25.16 30.71 6.629 14.93 25.34 26.89 
CFFF 3.437 8.274 21.14 28.67 3.468 8.473 21.31 27.98 
SSFF 3.347 17.93 22.68 40.57 3.365 17.61 19.79 38.57 
CSFF 5.286 22.22 24.74 46.70 5.343 19.82 24.61 43.67 
CCFF 8.439 25.57 29.56 51.11 7.218 24.30 27.07 48.21 
SFSF 9.554 15.70 38.83 44.55 9.621 16.06 38.09 38.93 
CFSF 14.77 25.93 47.87 48.89 15.14 21.60 41.94 49.54 
SSSF 11.51 34.82 41.06 59.64 11.66 29.01 41.35 59.29 
CSSF 19.51 39.35 51.39 68.96 17.28 32.61 51.41 65.06 
CCSF 21.30 43.49 51.98 72.42 18.21 37.38 51.83 71.32 
CFCF 35.27 38.05 52.60 60.49 24.74 28.56 45.10 60.86 
SCSF 14.72 39.37 41.65 63.66 13.05 34.16 41.69 63.11 
CSCF 36.08 45.81 62.47 73.20 25.85 37.36 62.61 67.80 
CCCF 36.43 49.52 62.90 81.78 26.51 41.40 62.94 75.78 
SSSS 25.48 49.61 55.84 80.46 20.78 49.39 50.44 79.18 
CSSS 31.31 58.56 59.67 88.62 25.08 52.83 58.80 86.47 
CCSS 34.16 61.76 66.44 94.71 28.36 60.80 61.68 93.01 
CSCS 40.65 62.24 69.80 96.37 31.07 55.92 69.17 94.62 
CCCS 42.85 69.49 71.49 101.95 33.83 64.52 70.85 100.67 
CCCC 46.08 73.88 78.10 109.68 37.56 72.59 72.66 108.41 
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A similar observation is made for most boundary conditions. For example, the first 

frequency of a CFFF increased by 7.5 % when a spherical curvature of 0.2 is introduced 

and increased by 36% when curvature is 0.5.  For  the boundary conditions of CCFF , 

CFCF, CCCF, SSSS, CSSS, CCSS, CSCS, CCCS, CCCC, the first frequency increased 

by more than  10 % when the curvature ratio is 0.2 and more than 50% when it is 0.5; 

with maximum increase for the simply supported case.  Increase in the other frequencies 

is moderate. The second frequencies of CFSF, SSSF, CSSF, and CCSF seem to be 

impacted significantly by curvature. Another interesting observation is that some 

frequencies tend to have a small reduction with the increase in curvature. Such reduction 

is all within 1%. 

Table 3.3 and 3.4 show the 147 term solutions for cylindrical shell with curvature 

ratios of 0.2 and 0.5. Note here that diagonal symmetry is lost and Table 3.3 shows 

results for (a/Rx = 0) and Table 3.4 shows the same results for (a/Ry = 0).  Note that 

diagonal symmetry is regained for 6 boundary conditions (FFFF, SSFF, CCFF, SSSS, 

CCSS and CCCC) and they yield the same results in Table 3.3 and 3.4. Again both the 

75-term solutions and 108-term solutions were obtained and convergence is observed to 

be within 1%. In many cases convergence is observed to the third significant figure. Only 

four significant results are reported here for all the results. The boundary conditions of 

SFFF, CFFF, SSFF, CSFF, and CCFF were among the fastest converging with accuracy 

achieved up to the third significant results for the first four frequency parameters. 

Boundaries where the support is restrained using springs (at x=a and y = b) tend to yield 

ill-conditioned matrices faster.  
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One basic observation is that having the restraint on the curved edge is yielding 

higher frequencies than having it on the straight edge. This is clear when one compares 

the CFFF boundary with a/Ry = 0.5 (Table 3.3) with the same boundary with a/Rx = 0.5 

(Table 3.4). The first has the curved surface clamped and is 48% higher than plate for the 

fundamental frequency, while the other is actually slightly lower than plate. The second 

frequency for SFFF is 29 % higher than its plate equivalent in Table 3.3 (curved edge 

 

Table 3.5: Frequency parameters 2 /a h D    of shallow hyperbolic paraboloidal 
shells / 1x yR R   , a/ b = 1, a / h = 20, ν = 0.3. 

B.C. a/R = 0.5 a/R = 0.2 
FFFF 13.41 24.10 31.23 35.45 13.46 21.90 24.24 34.94 
SFFF 6.549 19.02 25.57 31.45 6.628 16.06 25.42 26.76 
CFFF 4.837 8.317 25.11 29.30 3.814 8.480 22.38 27.89 
SSFF 3.309 19.42 24.89 37.88 3.358 18.78 19.32 38.16 
CSFF 6.345 24.22 28.37 44.75 5.621 20.37 25.09 43.35 
CCFF 7.558 28.62 32.68 51.19 7.071 25.58 27.03 48.22 
SFSF 12.91 15.94 41.28 43.78 10.41 16.11 37.45 39.77 
CFSF 18.41 25.99 45.72 53.08 15.86 21.64 40.72 50.06 
SSSF 14.05 29.79 45.09 59.40 12.20 28.06 41.86 59.11 
CSSF 21.71 36.52 54.76 68.60 17.76 32.05 39.42 39.42 
CCSF 25.79 41.98 55.37 73.62 19.19 37.03 52.48 71.69 
CFCF 36.86 38.15 51.50 63.14 25.07 28.62 44.92 61.47 
SCSF 20.85 36.11 45.78 64.32 14.38 33.59 42.43 63.31 
CSCF 37.40 45.11 65.41 72.28 26.16 37.49 63.13 67.60 
CCCF 38.20 49.57 66.06 81.85 26.78 41.60 63.92 77.26 
SSSS 19.25 52.79 52.79 78.46 19.66 49.92 49.92 78.85 
CSSS 28.80 56.32 62.38 86.72 24.59 51.78 59.24 80.69 
CCSS 34.99 65.23 65.47 93.89 28.52 61.38 61.57 92.91 
CSCS 41.15 61.24 72.16 95.50 31.19 55.88 69.64 94.61 
CCCS 44.49 69.45 74.64 102.65 34.15 64.16 71.44 100.95 
CCCC 50.54 78.44 78.52 109.57 38.51 74.09 73.97 108.00 
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restraint). When the straight edge is restrained, the frequency for SFFF shallow shell 

(Table 3.4) is close to that of plate.  

The boundary conditions SFSF, CFSF, SSSF, and CSSF in Table 3.3 where there 

is at least one straight edge free showed higher frequencies  than those for plates for the 

fundamental mode (by more than 10%). The same boundary conditions in Table 3.4 offer 

a curved free boundary are showing reduction in the fundamental mode when compared 

with plates. It is interesting that boundaries CCCF, SSSS, CSSS, CCSS, CSCS, CCCS 

and CCCC are showing much higher frequencies in Table 3.4 than those of plates. The 

second frequencies of CFSF, SSSF, CFCF are showing much higher frequencies for 

shells in Table 3.4 as compared with their counter parts in plates.  

 

Table 3.6: Frequency parameters 2 /a h D    of cantilevered shallow cylindrical 
shells using a finite element analysis (FEA) and Ritz method. a/ b = 1, a / 
h = 20, ν = 0.3. 

Curvature Ritz FEA 
Plate 3.472 8.512 21.29 27.20 3.493 8.603 21.33 27.29 
         

/ xa R = 0.2 3.468 8.473 21.31 27.98 3.481 8.441 21.05 27.70 

/ xa R = 0.5 3.437 8.274 21.14 28.67 3.585 8.323 20.86 28.04 
         

/ ya R  =0.2 3.806 8.526 21.98 27.29 3.797 8.491 21.73 26.99 

/ ya R = 0.5 5.164 8.594 24.65 28.10 5.176 8.630 24.46 27.82 

 

 

Table 3.5 shows the 147 term solutions for hyperbolic paraboloidal shell with 

curvature ratios of 0.2 and 0.5. Note here that diagonal symmetry is regained. Again both 
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the 75-term solutions and 108-term solutions were obtained and convergence is observed 

to be within 1%. In general, less ill conditioning in the matrices is observed with this 

shell than spherical and cylindrical ones. In many cases convergence is observed to the 

third significant figure. Only four significant results are reported here for all the results.  

 

 

Figure 3.4: Countour plots for the first four mode shapes of a cantilever plate and 
cylindrical shells. 

 

Similar to earlier findings for spherical and cylindrical shells, the boundary 

conditions of SFFF, CFFF, SSFF, CSFF, and CCFF were among the fastest converging 

with accuracy achieved up to the third significant results for the first four frequency 

parameters.  
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It is interesting to see that for these shells, the second and third frequencies of 

FFFF shallow shells are significantly higher than those for plates while the first and 

fourth are close to those of plates. The second and fourth frequencies of SFFF, the first 

and third for CFFF, the third for SSFF and CCFF, the first for most other boundaries 

(with the strange exception of SSSS) deliver much higher frequencies for hyperbolic 

paraboloidal shells than plates. The second modes have higher frequencies associated 

with them for CFCF and CCCF boundary conditions.  

It should be mentioned here that many of the results presented here have been 

validated with a commercial finite element software package (ANSYS®). The results 

show agreement with a fine finite element mesh (100 by 100 ). Table 3.6 shows an 

example of such comparisons for a CFFF (cantilvered) boundary condition case. Figure 

3.4, shows the mode shapes obtained using finite element for cantilevered plate and 

cylindrical shell with curvatures of a/Rx = 0.5. Also, in Fig. 3.4, results are given for a 

cylindrical shell with a/Ry = 0.5. Notice here that the mode shapes of the later are similar 

to those of the plate. This is confirming the finding that in order to maximize the natural 

frequencies, one needs to fix the curved edge of the shell. 

 

3.4. Conclusions 

Reasonably accurate natural frequency parameters are delivered for a wide set of 

boundary conditions. Their accuracy is established through extensive convergence studies 

that yielded accuracy up to the third significant figure for many situations. These results 

can be used for benchmarking by researchers in future references. They can also be used 
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by practicing engineers to gain more insight on the behavior of these shells undergoing a 

vibrational motion. 

In addition, this paper discussed interesting impact of shell curvature on shell 

frequencies. Only certain modes seem to be impacted significantly by curvature while 

others do not. Curvature and the boundary condition are interacting to deliver the 

frequency pattern for each of the 21 cases studied. 
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CHAPTER 4 

STATIC AND VIBRATION ANALYSES OF THICK DEEP LAMINATED 

CYLINDERICAL SHELLS USING 3D AND VARIOUS 

SHEAR DEFORMATION 

THEORIES 

 

Most of the engineering structures such as automotive, aerospace and submarine 

structures can be assumed as shells where one dimension of the structure, namely the 

thickness, is small in comparison to the other two dimensions. A shallow shell (or a plate) 

is a shell where the radii of its curvature are large (or infinity) compared with the span 

lengths or half sine waves in a vibration analysis.  

Theories that treat shell structures are based upon the three dimensional (3D) 

theory of elasticity. Thus, 3D analyses of shells are considered the most accurate. 

However, they are the most complicated and time consuming analyses. Even for today’s 

computers a 3D finite element analysis (FEA) for most practical problems is not feasible. 

Moreover, composite shells which are fairly common in today’s engineering structures, 

where each layer in the composite shell needs to be one or more element, make 3D 

analyses even more complicated. Shell theories redeem the difficulty of shell analyses by 

employing certain assumptions on the behavior of displacements in the thickness 

direction; First-order expansion of in-plane displacements give rise to first order shear 
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deformation shell theories (FSDT) and higher-order expansion results in higher order 

shear deformation theories (HSDT). Both set of theories reduce the problem from three 

dimensions to two dimensions. Classical shell theories, on the other hand, ignore the 

effects of shear deformation and rotary inertia. These theories are not accurate for treating 

composite shells because such shells are, in general, thicker and more flexible in shear 

than metallic ones. In addition, they are not accurate for higher frequencies in a vibration 

analysis as the thickness to half sine wave lengths for these frequencies become higher. 

On the other hand, HSDTs introduce difficulties when dealing with twisting curvature 

and treating boundary terms, e.g. Yaghoubshahi et al. [1]. Thus, FSDT theories are 

appropriate for use in moderately thick structures. 

In the basic equations derived for shells, difficulties arise as a term (1+z/R) 

appears in both the strain displacement and stress resultant equations. This term 

introduced difficulty early in the development of shell theories. Some researchers 

included the term even for thin isotropic shells like Flügge [2] and Vlasov [3] while other 

ignored it like Love [4]. Significant analyses of isotropic thin shells showed that indeed 

the term is negligible for such shells. 

The term was neglected by first analysts of composite thin shells (e.g. 

Ambartsumian [5]). While this is understandable for thin shells, the importance of the 

inclusion of the term needs to be tested for thicker shells. In addition to the inclusion of 

this term, both shear deformation and rotary inertia should be included for composite 

thick shells. Early treatment of composite thick shells [6,7] included both shear 

deformation and rotary inertia but failed to include the z/R terms. We will refer to these 
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as simply the first order shear deformation theory (FSDT). Interestingly, some 

researchers developed higher order theories while still neglecting the term, e.g. [8-10]. 

Qatu [11,12] presented equations where the term is carefully considered in the shell 

equations for composite deep thick shells. We will refer to his equations as the first order 

shear deformation shell theory by Qatu (FSDTQ). These equations will be described in 

detail here. Much of the literature on shell analysis is reviewed [13-16] recently showing 

a significant portion where inaccurate equations are still used. 

The equations of motion with required boundary conditions for doubly curved 

composite deep and thick shells with twisting curvature are presented using FSDTQ. 

Clear relations are presented for FSDT showing that they are a simplification from 

FSDTQ where effects of the depth of shells, (1+ z/R) term, is neglected. Moreover, exact 

static and free vibration solutions for isotropic and symmetric and anti-symmetric 

orthotropic cross-ply cylindrical shells with shear diaphragm boundary conditions for 

different length-to-thickness and length-to-radius ratios varying from thin and shallow to 

moderately thick and very deep shells are obtained using both FSDT and FSDTQ and 

compared with those of a converged 3D finite element analysis obtained using a 

commercial software package (ANSYS®). Dimensionless transverse displacement, 

moment and force resultants in a static analysis and the first five natural frequency 

parameters in the dynamic analysis are studied for eighteen different cylindrical shells 

and compared with 3D results. Also, Errors of FSDTQ and FSDT results (when 

comparing them to those of the 3D results) are obtained and discussed. 
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4.1. Static and free vibration formulation of the shells 

A doubly curved shell with in-plane axes and  , and a normal to the middle-

plane axis z , principal radii R and R in  and  directions, respectively, and a twisting 

radius R  is considered. The boundaries of the shell coincide with the principal axes. 

The Hamilton’s principle [17] for the equations of motion of a body with surface S and 

volume V between two arbitrary time intervals 0t  and 1t  requires that  

1

0

{ [
t

z z z z z zt
V

                           

( )] 0,ext
S

u u v v w w dV W dSdt             (1) 

where   and  are stress and strain components, respectively,   is the mass density, 

extW  is external work, and , ,u v and w  are velocity components in the , , and z  -

directions, respectively. Employing the first-order shear deformation model, the 

displacement components approximate as [e.g. 17] 

0( , , , ) ( , , ) ( , , ),u z t u t z t         

0( , , , ) ( , , ) ( , , ),v z t v t z t         

0( , , , ) ( , , ),w z t w t                   (2) 

where 2 2h z h    and h  is the shell thickness, 0u , 0v , and 0w  are midsurface 

displacements of the shell, and  and  are midsurface rotations. Eqs. (2) constitute 
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the only assumption needed to reduce a 3D elasticity equations in curvilinear coordinates 

to the shell theory by Qatu [11,12,17]. The strain-displacement relationships in the 

principal coordinates of a doubly-curved shell are [17] 

1 1( ),
(1 / )

u v A w
z R A AB R

 


 

 
  
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v u B w
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 
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 

 
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  
 

,z
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
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(1 / ) (1 / ) (1 / )z

w u vA z R
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   


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 
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         (3) 

In Eqs (5), 2 ( r / ).( r / )A       , 2 ( r / ).( r / )B       where r is the position vector 

of a point on the middle surface of the shell. By substituting Eqs (2) into (3), strain-

displacement equations become 
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0 0
1 1[ ( / )], [ ( / )],

(1 / ) (1 / )z z z zz R z R
z R z R       

 

        
          (4) 

The functions on the right-hand side of Eqs (4) are 
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 

  
 

   
       

0 0 0 0 0 0
0 0

1 1, ,z z
w u v w v u

A R R B R R   

   

 
   

 
         

1 1, ,A B
A AB B AB

  
 

   
 

   
     

1 1, .A B
A AB B AB

  
 

   
 

   
     (5) 

The stress resultants are defined as 

/2

/2
(1 ) ,

hT T

z zh

zN N Q M M P z z z dz
R           



     


         

/2

/2
(1 ) ,

hT T

z zh

zN N Q M M P z z z dz
R           



     


          (6) 

where the superscript T stands for the transpose of a vector. The applied load per unit 

area on the middle surface of a shell is taken as ze e ezq q q q      , where the unit 

vectors e  and e  are tangent to the principal axes and ze  is perpendicular to the shell 
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surface, respectively. Let 0 0 0, and z      be the components of applied traction on 

the edges  = constant and 0 0 0, and z      be the components of applied traction on 

the edges  = constant. The external work done by external loads on the shell yields 

1

0

/2

0 0/2
[ ( ) (

t h

ext zt h
w q u q v q w AB d d u   

 


         


        

/2

0 0 0 0/2
) (1 / ) ( ) (1 / ) ] .

h

z zh
w B z R dz d v u w A z R dz d dt     



         


           (7) 

In Eq. (7), the second and third integrals should be taken along the boundaries of the 

shell. Substituting Eqs. (6) into Eq. (7), the resultant equation with Eqs. (4) into Eq. (1), 

employing the definitions (6), setting 0,z   and carrying out the required manipulations 

results in following equations of motion [13] 

1 0 2

( )( ) ,
ANBN A B AB ABN N Q Q ABq ABI u ABI

R R


     

 


   

  
       

   
 

1 0 2

( ) ( )
,

AN BN B A AB ABN N Q Q ABq ABI v ABI
R R

 

     

 


   

   
       

   
 

1 0

( )( ) ( ) ,z

AQ N N NBQ NAB ABq ABI w
R R R

    

   

 
     

 
 

2 0 3

( )( ) ,
AMBM A B ABM M ABQ P ABI u ABI

R


    




   

  
      

   
 

2 0 3

( ) ( )
,

AM BM B A ABM M ABQ P ABI v ABI
R

 

    




   

   
      

   
        (8) 
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where in Eq. (8) 

2
1

1 1 , 1,2,3,i
i i i

II I I i
R R R R   




  
        

  

            (9) 

where 
1

( ) 2 3 4
1 2 3 4 5

1
, , , , 1, , , ,

k

k

hN
k

k h

I I I I I z z z z dz




     . The stress resultant terms are shown 

in Figs 2.3 and 2.4. Also, the remaining terms in the Hamilton’s principle functional lead 

to the natural and geometric boundary conditions for the shell. The boundary data on an 

edge  = constant are 

0 0either 0 or knownN N u     

0 0either 0 or knownN N v     

0 0either 0 or knownQ Q w     

0either 0 or knownM M      

0either 0 or knownM M               (10) 

Depending upon the type of shell boundary, five boundary conditions should be chosen 

from the above cases at each edge. The stress-strain relationships for a single orthotropic 

lamina in a shell is  
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
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QQQ
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           (11) 

The components of the matrix of material properties in Eqs (11) in terms of the stiffness 

coefficients in the direction of principal axes of material orthotropy may be written as 

4 2 2 4 2 2 4 4
11 11 12 66 22 12 11 22 66 122( 2 ) , ( 4 ) ( ),Q Q m Q Q m n Q n Q Q Q Q m n Q m n          

4 2 2 4
22 11 12 66 22 45 55 442( 2 ) , ( ) ,Q Q n Q Q m n Q m Q Q Q mn       

3 3 2 2
16 11 12 66 12 22 66 44 44 55( 2 ) ( 2 ) , ,Q Q Q Q m n Q Q Q mn Q Q m Q n         

3 3 2 2
26 11 12 66 12 22 66 55 44 55( 2 ) ( 2 ) , ,Q Q Q Q mn Q Q Q m n Q Q n Q m         

2 2 2 2 2
66 11 22 12 66( 2 ) ( )Q Q Q Q m n Q m n                (12) 

In Eqs (12), cosm  , sinn   , where   is the angle between a principal axis of 

material orthotropy and  -axis. The components of the material properties in Eqs (12) in 

terms of engineering constants are 

,/EQ,/EQ,/EQ 22221112111    

44 23 55 13 66 12, , ,Q G Q G Q G            (13) 

where 12 211     . We substitute Eqs (4) into Eqs (11) the resultant equations into Eqs 

(6), carry out the integration in the thickness direction for a shell composed of M layers 
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while ignoring terms of O 2( )z R  and arrive at the following relationships for the stress 

resultants [11,12,13,17] 

11 12 16 16 11 12 16 16

12 22 26 26 12 22 26 26

16 26 66 66 16 26 66 66

16 26 66 66 16 26 66 66

11 12 16 16 11 12 16 16

12 22 26 26 12 22 26

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

A A A A B B B BN
A A A A B B B BN
A A A A B B B BN

N A A A A B B B B
M B B B B D D D D
M B B B B D D D
M
M

















 
 
 
 
 
  
 
 
 
 
 
  

0

0

0

0

26

16 26 66 66 16 26 66 66

16 26 66 66 16 26 66 66

,

ˆ ˆ ˆ ˆ

D
B B B B D D D D

B B B B D D D D

































   
   
   
   
   
   
   
   
   
   
   
      

 

55 45 55 45 0

45 45 044 44

55 45 55 45

45 4544 44
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,

/
/ˆ ˆ

z

z

A A B BQ
Q A BA B

RP B B D D
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 

 

 
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







    
    
         
    

         

           (14) 

0 0

0 0

0 0

ˆ, ,
ˆ, , , , 1, 2,4,5,6,
ˆ, ,

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

A A c B A A c B

B B c D B B c D i j

D D c E D D c E

   


    


    

         (15) 

where 0
1 1c

R R 

 
   
 
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( )
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1

( ) 2 2
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1
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A K K Q h h
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D K K Q h h
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












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

  



  








          (16) 

1k kh h  is the thickness of k-th layer, and ,K and K   are the shear correction factors in 

and   directions, respectively. Substitution of ˆ,ij ij   by , , 1,2,4,5,6,ij i j   where 

, ,A B D   leads to the formulation of FSDT which ignores effects of the shell depth 

[11, 12]. It is worth mentioning that for spherical shells ,R R   

ˆ , , 1,2,4,5,6, , ,ij ij ij i j A B D        , thus FSDTQ and FSDT are identical. Other 

publications which used a similar approach include those in references [18-20]. 

 

4.2. Exact solution for cylindrical shells 

A cylindrical laminated shell with length a  and arc b  under load per unit area, q  in the 

thickness direction is considered here. Therefore, 1A B  , 1/ 1/ 0R R   , and 

R R   should be substituted in Eqs (6), (8-9), and (14) to arrive to the required 

formulations of cylindrical shells for both FSDT and FSDTQ. Consequently, Eqs (5) for 

cylindrical shells become 

0 0 0 0 0 0
0 0 0 0 0, , , , ,z

u v w v u w
R     

    
     

    
        
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0 0
0 , , , , .z

w v
R

  
     

   
     

    
             (17) 

In Eq. (15), 0 1/c R  , the first equation of (14) is still valid and the second equation of 

(14) becomes 

55 45 0

045 44

.ˆ
z

z

Q A A
Q A A

 

 





    
     
     

             (18) 

Equations of motion (8) for the cylindrical shell reduce to 

1 0 2 1 0 2, ,
N N N QN I u I I v I

R
   

  
   

  
      

   
 

1 0 2 0 3, ,
Q N MQ Mq I w Q I u I

R
   

 
   

  
       

   
 

2 0 3 ,
M M

Q I v I 

 
 

 
   

 
            (19) 

where 1 , 1,2,3.i
i i

II I i
R
 

   
 

 For a cross-ply cylindrical shell, 16 26 45 0,     

, , , .A B D and E   For such shell with shear diaphragm boundary conditions, the 

following relations for middle surface displacements and rotations satisfy these 

conditions [17] 

0 0cos( )sin( )sin( ), sin( )cos( )sin( ),mn m n mn mn m n mnu U t v V t            

0 ( )sin( )sin( ), cos( )sin( )sin( ),mn m n mn mn m n mnw W sin t t               
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sin( )cos( )sin( ).mn m n mnt                   (20) 

where /m m a   and /n n b  . Substituting Eqs (20) into stress resultants relations 

and the results into Eq. (19) leads to the following five homogenous algebraic system of 

equations 

2{[ ] [ ]}{ } { },mnK M Q                (21) 

where 

{ } { , , , , } , { } {0,0, ,0,0} ,T T
mn mn mn mn mn mnU V W Q q      

2 2 12
11 11 66 12 21 12 66 13 31

ˆ , ( ) , ,m n m n m
AK A A K K A A K K
R

              

2 2
14 41 11 66 15 51 12 66, ( ) ,m n m nK K B B K K B B            

2 2 44 22 44
22 66 22 23 32 24 42 12 162

ˆ ˆ ˆ
, , ( ) ,ˆm n n m n

A A AK A A K K K K B B
R R

    


           

2 2 2 244 22
25 52 66 22 33 55 44 2

ˆ ˆˆ , ,m n m n
A AK K B B K A A
R R

             

2 212 22
34 43 55 35 53 44 44 55 11 66

ˆˆ ˆ[ ] , [ ] , ,m n m n
B BK K A K K A K A D D
R R

                

2 2
45 54 12 66 55 44 66 22

ˆ ˆ( ) , ,m n m nK K D D K A D D                   (22) 

mnq  are coefficients of double Fourier expansion of applied load q , and the non-zero 

components of M  are 
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2
11 22 33 1, ,ij ji

IM M M M M I
R

      

3 4
14 25 2 44 55 3, .I IM M I M M I

R R
                (23) 

Eqs. (21) are actually valid for forced vibration analysis. For a free vibration problem, it 

suffices to put { } {0}Q   in Eq. (21) and solve the resulting eigenvalue problems to find 

the natural frequencies, mn , and corresponding mode shapes, { } . For static analyses, 

the natural frequency term 0mn   should be substituted into Eq. (21). The resultant 

algebraic system of equations for middle surface displacements and rotations should then 

be solved. Stress resultants are first recovered from midsurface strain and curvature 

changes, then strains and stresses are recovered from the displacements in a normal 

manner. 

 

4.3. Numerical results 

In all of the following examples, cylindrical shells with length-to-arc ratio is one 

(i.e. / 1a b  ), shear correction factors in both directions are 2 5 / 6,k   and 0.25   for 

isotropic materials, and 1 2/ 25,E E   12 2/ 0.5,G E   23 2 0/ .2,G E   13 12,G G  and 

12 0.25  for orthotropic materials are considered. In static analyses, shells are under 

uniformly distributed load q . Thus, using a Fourier analysis, one finds the coefficients of 

a Fourier transform as 216 /mnq q mn  in Eq. (22). Numerical investigation showed that 
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the terms m and n did not need to exceed fifty for convergence of the results. 

Dimensionless transverse displacement, moment and force resultants  

* 3 3 4 * 3 2 * 3 3
210 , 10 , 10 ,n i i i iw E h w q a M M qa N N qa          (24) 

where ,i   , at the center of the shell are calculated based upon both FSDT and FSDTQ. 

In the dynamic analyses, the first five natural frequency parameters 

2 2
2 / , 1,...,5i ia E h i     are obtained from those theories. In both analyses the 

results are calculated for isotropic, three-ply symmetric [0/90/0], and two-ply anti-

symmetric [90/0] shells for different thickness ratios /a h  and depth ratios /a R . 

Presented results from both FSDT and FSDTQ are compared against each others and 

against those obtained using 3D elasticity from finite element method (FEM). Figure 4.1 

shows the mesh pattern of a typical cylindrical shell modeled using FEM wherein 3D 

elements are used. Moreover, W  and V  are set to zero at   constant planes at 

boundary edges to make sure that 0 0 0v w     in presented theories and q  is divided 

into two positive and negative pressures at the top and bottom planes of the shell; 

respectively, such that the whole force on the shell is equal to abq . Table 4.1 shows a 

convergence study for the first five natural frequency parameters obtained by three 

dimensional FEM analysis for an isotropic shell with a thickness ratio / 10a h   

(moderately thick shell) and a depth ratio / 2a R  (deep shell). It is shown there that 

natural frequencies are converging to the fifth decimal place using a 30 by 30 by 4 

quadratic solid elements. A smaller size mesh showed good convergence of the 

fundamental frequency.  
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Figure 4.1: Three dimensional mesh pattern of a moderately thick and deep cylindrical 
shell. 

 

Table 4.1: Convergence study of first five natural frequency parameters obtained by 
FEM three dimensional analysis for isotropic cylindrical shells. 

Mesh 1  2  3  4  5  
10 10 2   9.5801 8.437 19.666 21.429 24.211 
10 10 4   9.5795 12.403 19.662 21.413 24.177 
10 10 8   9.5795 12.402 19.662 21.413 24.175 
      
20 20 2   9.5795 12.406 19.661 21.419 24.167 
20 20 4   9.5791 12.398 19.657 21.403 24.135 
20 20 8   9.5791 12.398 19.657 21.403 24.133 
      
30 30 2   9.5795 12.406 19.661 21.419 24.165 
30 30 4   9.5791 12.397 19.657 21.401 24.131 
30 30 8   9.5791 12.397 19.657 21.401 24.131 
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4.3.1. Static analysis 

Table 4.2 shows dimensionless displacement and force and moment resultants at 

the center of isotropic shells with different thickness ratios /a h   10, and 20 describing  

 

Table 4.2: Comparison of dimensionless displacement and moment and force 
resultants as in Eqs (24) of isotropic cylindrical shells. 

/a h
 

/a R
 

 *w  
*M  

*M   
*N  

*N  
  FSDTQ 26.679 25.215 24.340 1378.9 1281.9 
 0

.
5 

FSDT 26.596 25.032 24.376 1370.1 1281.6 
  3D 26.698 25.304 24.377 1378.2 1281.0 
        
  FSDTQ 11.388 9.4298 7.5046 1211.2 1090.3 
 1 FSDT 11.337 9.1821 7.6363 1202.9 1087.8 
20  3D 11.427 9.4918 7.4756 1212.4 1090.9 
        
  FSDTQ 3.0070 1.5774 1.5604 713.13 633.06 
 2 FSDT 2.9994 1.3327 1.3535 710.62 630.86 
  3D 3.0350 1.6384 1.6121 715.48 633.99 
        
  FSDTQ 40.956 38.905 37.929 535.51 470.14 
 0

.
5 

FSDT 40.699 38.584 37.928 526.14 472.81 
  3D 40.875 39.151 38.108 530.95 465.63 
        
  FSDTQ 28.333 26.042 23.237 746.57 651.79 
 1 FSDT 28.009 25.301 23.395 730.05 650.49 
10  3D 28.415 26.344 23.346 743.22 648.45 
        
  FSDTQ 12.108 9.9288 4.5215 657.47 572.61 
 2 FSDT 11.972 8.9645 5.1307 644.04 566.19 
  3D 12.242 10.149 4.3759 658.16 573.24 
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moderately thick and thin shells, respectively. It also shows results for three different 

depth ratios /a R   0.5, 1, and 2 representing shallow, deep, and very deep shells, 

respectively. Although the error of dimensionless displacement calculated from both 

FSDTQ and FSDT for thin shells for all depth ratios stays under 1%, FSDTQ’s results are  

 

Table 4.3: Comparison of dimensionless displacements and moments and force 
resultants as in Eqs. (24) of [90/0] orthotropic cylindrical shells. 

/a h
 

/a R
 

 *w  
*M  

*M   
*N  

*N  
  FSDTQ 11.632 52.953 28.801 1086.1 994.64 
 0.5 FSDT 11.636 52.822 28.740 1083.4 996.77 
  3D 11.612 53.689 29.643 1084.7 990.78 
        
  FSDTQ 5.6782 31.255 5.5480 1070.5 959.45 
 1 FSDT 5.6735 31.043 5.5104 1067.0 959.78 
20  3D 5.6746 31.638 5.9669 1070.5 957.92 
        
  FSDTQ 1.7117 13.077 6.4874 660.41 611.31 
 2 FSDT 1.7089 12.899 6.4325 658.02 610.42 
  3D 1.7106 13.250 6.2433 661.99 612.94 
        
  FSDTQ 17.141 63.319 47.531 396.12 340.21 
 0.5 FSDT 17.188 63.160 47.393 394.21 343.88 
  3D 17.009 64.496 48.617 393.25 332.46 
        
  FSDTQ 12.738 53.117 26.648 598.29 511.21 
 1 FSDT 12.751 52.616 26.338 594.33 515.24 
10  3D 12.679 54.318 27.476 595.02 503.90 
        
  FSDTQ 5.9687 30.875 0.7428 574.42 511.74 
 2 FSDT 5.9488 30.132 0.8399 568.08 511.26 
  3D 5.9629 31.668 0.5844 574.34 510.95 
 

closer to those of 3D. This error of FSDT’s results for thicker shells increases to 2.2% as 

the depth of the shells increases whereas it is still less than 1% for FSDTQ. For 
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dimensionless moment and force resultants, a similar observation is still valid here to that 

made earlier for dimensionless displacements. The error, however, for deeper and thicker 

shells reached higher than 10% for moment results using FSDT and remained at 3% 

where FSDTQ is used. This shows the significant improvement that has been made here 

by using FSDTQ as compared with FSDT. A similar observation is made recently by 

Khdeir [18]. 

 

Table 4.4: Comparison of dimensionless displacements and moments and force 
resultants as in Eqs (24) of [0/90/0] orthotropic cylindrical shells. 

/a h
 

/a R
 

 *w  
*M  

*M   
*N  

*N  
  FSDTQ 6.1289 103.49 6.9507 573.31 559.77 
 0.5 FSDT 6.1282 103.42 6.9604 571.68 559.67 
  3D 6.3773 101.85 7.7181 596.06 576.85 
        
  FSDTQ 3.8321 64.062 2.6818 720.17 709.00 
 1 FSDT 3.8314 63.908 2.7087 718.62 708.66 
20  3D 3.9303 62.260 2.9527 738.14 719.09 
        
  FSDTQ 1.3646 22.235 1.8251 523.35 556.50 
 2 FSDT 1.3654 22.040 1.7775 524.39 556.13 
  3D 1.3753 21.468 1.9346 527.80 556.25 
        
  FSDTQ 9.5159 115.57 11.341 224.27 201.89 
 0.5 FSDT 9.5092 115.46 11.340 222.26 202.12 
  3D 10.661 112.55 13.847 249.78 222.52 
        
  FSDTQ 7.8589 95.411 7.9335 370.84 335.59 
 1 FSDT 7.8418 95.117 7.9421 367.19 335.23 
10  3D 8.6399 91.340 9.5561 405.29 362.88 
        
  FSDTQ 4.4754 54.405 1.0161 424.23 398.24 
 2 FSDT 4.4600 54.021 1.0879 420.58 396.17 
  3D 4.7425 50.500 1.3337 446.10 415.31 
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In the next examples, the previous problem is investigated for two-layer [90/0] and three-

layer [0/90/0] composite cylindrical shells and results are shown in Tables 4.3 and 4.4, 

respectively. Some stress resultant terms where in significant error using FSDT, while the 

error is much less when FSDTQ is employed. A similar observation on errors of FSDT 

for composite materials is made. It is concluded here that in almost all cases FSDTQ 

gives better results than FSDT comparing to the results of 3D finite element analysis. 

 

Table 4.5: Comparison of first five dimensionless natural frequency parameters of 
isotropic cylindrical shells. 

/a h
 

/a R
 

 1  2  3  4  5  
  FSDTQ 7.5553 14.416 16.386 23.188 28.148 
 0.5 FSDT 7.5651 14.422 16.401 23.200 28.149 
  3D 7.5523 14.423 16.390 23.206 28.183 
        
  FSDTQ 11.026 14.445 21.173 24.365 27.851 
 1 FSDT 11.048 14.466 21.216 24.408 27.856 
20  3D 11.017 14.444 21.166 24.368 27.884 
        
  FSDTQ 14.585 17.957 26.700 28.360 33.469 
 2 FSDT 14.656 17.977 26.723 28.482 33.550 
  3D 14.562 17.945 26.727 28.324 33.455 
        
  FSDTQ 6.0913 13.529 14.098 20.955 25.425 
 0.5 FSDT 6.1020 13.531 14.113 20.963 25.412 
  3D 6.0921 13.560 14.124 19.869 19.871 
        
  FSDTQ 7.0900 13.281 15.439 21.039 25.131 
 1 FSDT 7.1204 13.290 15.491 21.069 25.118 
10  3D 7.0810 13.309 15.452 19.869 19.877 
        
  FSDTQ 9.5961 12.381 19.660 21.378 23.986 
 2 FSDT 9.6275 12.424 19.774 21.472 23.945 
  3D 9.5791 12.397 19.657 21.401 24.131 
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4.3.2. Free vibration analysis 

The same set of shells investigated in static analysis section are considered for free 

vibration analyses to find the first five natural frequency parameters with both FSDT and 

FSDTQ and compare them with the 3D elasticity results obtained by FEM. Those results 

for isotropic cylindrical shells are shown in Table 4.5. It can be seen that both shear 

 

Table 4.6: Comparison of first five dimensionless natural frequency parameters of 
[90/0] orthotropic cylindrical shells. 

/a h
 

/a R
 

 1  2  3  4  5  
  FSDTQ 11.530 25.357 27.913 36.324 50.210 
 0.5 FSDT 11.527 25.330 27.896 36.288 50.151 
  3D 11.537 25.378 27.951 36.434 50.253 
        
  FSDTQ 15.859 25.648 34.867 37.831 50.263 
 1 FSDT 15.863 25.601 34.850 37.778 50.148 
20  3D 15.861 25.658 34.890 37.942 50.297 
        
  FSDTQ 24.809 26.193 42.664 49.382 51.170 
 2 FSDT 24.809 26.132 42.627 49.166 51.144 
  3D 24.805 26.162 42.743 49.359 51.167 
        
  FSDTQ 9.4577 21.676 22.150 29.959 38.608 
 0.5 FSDT 9.4450 21.624 22.112 29.890 38.512 
  3D 9.4855 21.743 22.246 30.193 38.745 
        
  FSDTQ 10.666 21.705 24.090 30.368 38.722 
 1 FSDT 10.657 21.608 24.043 30.247 38.530 
10  3D 10.686 21.767 24.191 30.614 38.896 
        
  FSDTQ 13.771 21.037 29.574 31.200 38.073 
 2 FSDT 13.768 20.873 29.535 31.033 37.696 
  3D 13.772 21.040 29.639 31.411 38.266 

 

deformation theories predict all five natural frequencies close to 3D results (less than 1% 

error for all cases). Table 4.6 and 4.7 compare frequency parameters for [90/0] and 
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[0/90/0] composite shells, respectively. It is worth mentioning that, while maximum error 

for anti-symmetric lay-up of FSDT results increases to 2%, it stills under 1% for FSDTQ 

results whereas the maximum error increases to 7.8% for symmetric lay-up in both shell 

theories. However, the general observation is that errors of both shear deformation 

theories in comparison to 3D results increase as the thickness and depth of the shell 

increase and for higher natural frequencies and in the same conditions the improvement 

of FSDTQ respect to FSDT toward 3D results increases too. 

 

Table 4.7: Comparison of dimensionless first five dimensionless natural frequency 
parameters of [0/90/0] orthotropic cylindrical shells.  

/a h
 

/a R
 

 1  2  3  4  5  
  FSDTQ 15.551 21.646 37.022 46.309 48.938 
 0.5 FSDT 15.551 21.646 37.022 46.311 48.940 
  3D 15.245 21.370 36.803 43.529 46.148 
        
  FSDTQ 18.710 21.974 36.794 49.770 49.852 
 1 FSDT 18.709 21.975 36.795 49.779 49.860 
20  3D 18.471 21.703 36.567 47.074 47.416 
        
  FSDTQ 23.178 25.978 35.923 52.746 57.077 
 2 FSDT 23.177 25.959 35.925 52.769 58.869 
  3D 22.924 25.840 35.668 50.360 56.448 
        
  FSDTQ 12.443 18.677 30.839 31.323 34.456 
 0.5 FSDT 12.445 18.678 30.839 31.331 34.462 
  3D 11.769 18.159 28.600 30.471 31.928 
        
  FSDTQ 13.187 18.524 30.564 32.232 34.523 
 1 FSDT 13.192 18.528 30.562 32.258 34.546 
10  3D 12.590 18.005 29.732 30.189 32.037 
        
  FSDTQ 15.250 17.989 29.491 34.795 34.913 
 2 FSDT 15.241 17.996 29.487 34.866 34.951 
  3D 14.840 17.468 29.094 32.464 33.046 
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4.3.3. Modified FSDTQ 

FSDTQ uses the radii of the midsurface of the shell in its equations for calculating 

moment of inertias and stress resultants (Eqs (9) and (15)). One may use the radii of each 

lamina instead of the mid-surface to modify those equations. Moment of inertia equation 

considering the radius of each lamina is 

2
1

1

1 1 , 1,2,3,
kN

k k i
i i i k k k k

k

II I I i
R R R R   






  
        

  
     (24) 

 

Table 4.8: Comparison of dimensionless displacements and moments and force 
resultants of orthotropic cylindrical shells with shear diaphragm boundary 
condition ( / 10a h  ). 

Lay-up /a R
 

 *w  
*M  

*M   
*N  

*N  
  present 12.739 53.104 26.670 598.35 511.09 
  FSDTQ 12.735 53.137 26.605 598.11 511.48 
 1 FSDT 12.751 52.616 26.338 594.33 515.24 
[90/0]  3D 12.679 54.318 27.476 595.02 503.90 
        

  present 5.9741 30.866 0.7133 574.96 511.63 
  FSDTQ 5.9557 30.867 0.8112 573.06 512.16 
 2 FSDT 5.9488 30.132 0.8399 568.08 511.26 
  3D 5.9629 31.668 0.5844 574.34 510.95 
        
  present 7.8601 95.406 7.9373 370.90 335.60 
  FSDTQ 7.8514 95.432 7.9169 370.48 335.57 
 1 FSDT 7.8418 95.117 7.9421 367.19 335.23 
  3D 8.6399 91.340 9.5561 405.29 362.88 
        
[0/90/0]  present 4.4781 54.393 1.0213 424.50 398.29 
  FSDTQ 4.4578 54.441 0.9926 422.51 398.12 
 2 FSDT 4.4600 54.021 1.0879 420.58 396.17 
  3D 4.7425 50.500 1.3337 446.10 415.31 
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where
1

2 3 4
1 2 3 4 5, , , , 1, , , ,

k

k

h
k k k k k k

h

I I I I I z z z z dz



        and kR  and kR  are the radii of each 

layer in the   and   directions, respectively. The stress resultant equations are 
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Table 4.8 shows the results of static analysis on a moderately thick composite 

( / 10a h  ) shell with different depth ratios for the present theory compared with FSDT, 

FSDTQ and 3D results. It can be seen that the present modification improves the results 

of FSDTQ significantly comparing with 3D results. Table 4.9 shows first five natural 

frequency parameters for the same problem as the last example. Present modification 

predicts natural frequency parameters better than other theories. 

 

Table 4.9: Comparison of first five natural frequency parameters of orthotropic 
cylindrical shells with shear diaphragm boundary condition( / 10a h  ). 

Lay-up /a R
 

 1  2  3  4  5  
  present 10.668 21.717 24.087 30.373 38.744 
  FSDTQ 10.666 21.705 24.090 30.368 38.722 
 1 FSDT 10.657 21.608 24.043 30.247 38.530 
[90/0]  3D 10.686 21.767 24.191 30.614 38.896 
        
  present 13.772 21.072 29.569 31.216 38.147 
  FSDTQ 13.771 21.037 29.574 31.200 38.073 
 2 FSDT 13.768 20.873 29.535 31.033 37.696 
  3D 13.772 21.040 29.639 31.411 38.266 
        
  present 13.186 18.531 30.581 32.229 34.524 
  FSDTQ 13.187 18.524 30.564 32.232 34.523 
 1 FSDT 13.192 18.528 30.562 32.258 34.546 
  3D 12.590 18.005 29.732 30.189 32.037 
        
[0/90/0]  present 15.245 18.001 29.548 34.800 34.904 
  FSDTQ 15.250 17.989 29.491 34.795 34.913 
 2 FSDT 15.241 17.996 29.487 34.866 34.951 
  3D 14.840 17.468 29.094 32.464 33.046 
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4.4. Conclusions 

Both static and vibration analyses are performed on composite cylindrical shells 

using a first order shear deformation theory with plate-like stiffness coefficients (FSDT), 

a first order shear deformation theory by Qatu (FSDTQ) where these coefficients are 

integrated exactly or truncated to the first order and three dimensional elasticity (3D). 

FSDTQ offers a more accurate representation of the stiffness parameters and the stress 

resultant equations. Most analyses performed here show that there is an improvement 

(closer to 3D) obtained when FSDTQ is used. In addition, such improvement is observed 

to be higher for deeper and thicker shells than for thin shallow shells, especially in static 

analyses. Moreover, FSDTQ has been modified by using the radii of each laminate 

instead of the radii of mid-plane in the calculating of the moments of inertias and stress 

resultants. The results show that this modification improves FSDTQ’s results 

significantly. This analysis can be a prelude to the derivation of a proper higher order 

shell theory (e.g. third order) where the term (1+z/R) needs to be truncated at the third 

order. 
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CHAPTER 5 

STATIC ANALYSIS OF THICK LAMINATED SHELLS WITH 

DIFFERENT BOUNDARY CONDITIONS 

USING GDQ 

 

Shells are commonly used in many engineering structures; such as automotive, 

aerospace and submarine structures. Composite shells are getting particularly more 

attention recently. Because of the simplicity of shell theories, it is favorable to analyze 

shell structures with shell theories instead of three dimensional (3D) theory of elasticity 

Shell theories redeem difficulty of shell analyses by employing certain assumptions on 

the behavior of displacements in the thickness direction; For instance, first-order 

expansion of in-plane displacements leads to first order shear deformation shell theories 

(FSDTs). 

Difficulties rise as a term (1+z/R) appears in both the strain displacement and 

stress resultant equations in the derivation of the basic equation of shells. The term was 

neglected by first analysts of composite thin shells (e.g. Ambartsumian [1]) which is 

understandable for thin shells. Although the importance of the inclusion of the term has 

been tested for thicker shells with simply supported boundaries and proven to be essential 

[2], no attempt has been made to general boundary conditions. In addition to the inclusion 

of this term, both shear deformation and rotary inertia should be included for composite 
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thick shells. Earlier treatment of composite thick shells included both shear deformation 

and rotary inertia rotary but failed to include the z/R terms [3,4]. We will refer to these as 

simply the first order shear deformation theory (FSDT). Interestingly, some researchers 

developed higher order theories while still neglecting the (1+z/R) term, e.g. [5-7]. Qatu 

[8, 9] presented equations where the term is considered in the shell equations for 

composite deep thick shells. We will refer to his equations as the first order shear 

deformation shell theory by Qatu (FSDTQ). Asadi et al. [2] used FSDTQ to find exact 

static and free vibration solution of isotropic and composite deep shells with fully simply 

supported boundary conditions. They showed that using of FSDTQ instead of FSDT 

significantly improves the results when compared to 3D results. The effect of using 

FSDTQ on shells with different boundary conditions and general lay-ups of laminates 

needs to be examined. Much of the literature on shell analysis is reviewed recently 

showing that inaccurate equations are still used in a significant portion of shells works 

[10-13].  

Equilibrium equations with required boundary conditions for doubly curved deep 

and thick composite shells are shown using FSDTQ. It is shown that FSDT is a 

simplification from FSDTQ where the effects of depth of shells are neglected. 

Equilibrium equations are put together with the equations of stress resultants to arrive to a 

system of seventeen first order differential equations. General Differential Quadrature 

(GDQ) method is employed to solve this system of first order differential equations. 

Isotropic, cross-ply, angle-ply and general lay-up cylindrical shells with six types of 

different boundary conditions which are combinations of simply supported, clamp, and 

free boundary conditions are examined using both FSDTQ and FSDT. The results 
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obtained here are compared with those obtained by different first order and higher order 

theories available in the literature for a fully S1-type isotropic cylindrical shell. 

Moreover, dimensionless transverse displacement, moment and force resultants of 

moderately thick and very deep shells are obtained using both FSDT and FSDTQ for 

three different lay-ups and six different boundary conditions and compared with those of 

a converged 3D finite element analysis obtained by ANSYS®. Also, Errors of FSDTQ 

and FSDT results (when comparing them to those of the 3D results) are obtained and 

discussed. 

 

5.1. Formulation of shells with different BC for static analysis 

The principle of virtual work for the equilibrium of a body with surface S and 

volume V requires that  

[ ] 0,z z z z z z ext
V S

dV W dS                              (1) 

where   and  ; respectively, are stress and strain components and extW  is the virtual 

work done by external forces. A doubly curved shell wherein the boundaries of the shell 

coincides along the in-plane principal axes ,   with normal to the middle-plane axis z , 

principal radii R and R ; respectively, in  and  directions, and twisting radius R  is 

considered in this study. First-order shear deformation model approximates the 

displacement components as  

0( , , ) ( , ) ( , ),u z u z          
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0( , , ) ( , ) ( , ),v z v z          

0( , , ) ( , ),w z w                   (2) 

where 2 2h z h    and h  is the shell thickness, 0u , 0v , and 0w  are midsurface 

displacements of the shell, and   and   are midsurface rotations. By substituting Eqs 

(2) into the strain-displacement relationships in the principal coordinates of a doubly-

curved shell [14], strain-displacement equations become 

0 0
1 1( ), ( ), 0,

(1 / ) (1 / ) zz z
z R z R     

 

          
 

 

0 0
1 1( ), ( ),

(1 / ) (1 / )
z z

z R z R     

 

        
 

 

0 0
1 1[ ( / )], [ ( / )].

(1 / ) (1 / )z z z zz R z R
z R z R       

 

        
 

        (3) 

The functions on the right-hand side of Eqs (3) are 

0 0 0 0 0 0
0 0

1 1, ,u v w v u wA B
A AB R B AB R 

 

  
 

   
       

0 0 0 0 0 0
0 0

1 1, ,v u w u v wA B
A AB R B AB R 

 

  
 

   
       

0 0 0 0 0 0
0 0

1 1, ,z z
w u v w v u

A R R B R R   

   

 
   

 
         

1 1, ,A B
A AB B AB

  
 

   
 

   
     
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1 1, .A B
A AB B AB

  
 

   
 

   
               (4) 

In Eqs (4), 2 ( r / ).( r / )A       , 2 ( r / ).( r / )B       where r  is the position 

vector of a point on the middle surface of the shell. The stress resultants are defined as 

/2

/2
(1 ) ,

hT T

z zh

zN N Q M M P z z z dz
R           



     


         

/2

/2
(1 ) ,

hT T

z zh

zN N Q M M P z z z dz
R           



     


          (5) 

where the superscript T stands for the transpose of a vector. The applied load per unit 

area on the middle surface of a shell is ze e ezq q q q      , where the unit vectors e  

and e  are tangent to the principal axes and ze  is perpendicular to the shell surface. The 

virtual work done by external loads on the shell yields 

/2

0 0/2
( ) (

h

ext z h
w q u q v q w AB d d u   

 


         


         

/2

0 0 0 0/2
) (1 / ) ( ) (1 / ) ,

h

z zh
w B z R dz d v u w A z R dz d     



         


               (6) 

where 0 0 0, and z      are the components of applied traction on the edges  = 

constant and 0 0 0, and z      are the components of applied traction on the edges  = 

constant. Also, the second and third integrals in Eq. (6) should be taken along the 

boundaries of the shell. Substituting Eqs (5) into Eq. (6), the resultant equation with Eqs 

(3) into Eq. (1), employing the definitions (5), setting 0,z   and carrying out the 
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required manipulations results in 

1 2

0

( )( ){[ ]
ANBN A B AB ABN N Q Q ABq u

R R


    

  


   

  
     

      

0

( ) ( )
[ ]

AN BN B A AB ABN N Q Q ABq v
R R

 

    

 


   

   
      

   
 

0

( )( )[ ( ) ]z

AQ N N NBQ NAB ABq w
R R R

    

  


 

 
     

 
 

( )( )[ ]
AMBM A B ABM M ABQ P

R


    




   

  
     

   
 

( ) ( )
[ ] }

AM BM B A ABM M ABQ P d d
R

 

    



  
   

   
     

   
 

0 0 0 0 0 0[( ) ( ) ( ) ]N N u N N v Q Q w M M Bd         



              

0 0 0 0 0 0[( ) ( ) ( ) ] 0.N N u N N v Q Q w M M Ad         



               

           (7) 

By virtue of Eqs (7), the following five governing differential equations are derived, [14] 

( )( ) 0,
ANBN A B AB ABN N Q Q ABq

R R


    

    

  
      

   
 

( ) ( )
0,

AN BN B A AB ABN N Q Q ABq
R R

 

    

    

   
      

   
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( )( ) ( ) 0,z

AQ N N NBQ NAB ABq
R R R

    

   

 
     

 
 

( )( ) 0,
AMBM A B ABM M ABQ P

R


   

   

  
     

   
 

( ) ( )
0.

AM BM B A ABM M ABQ P
R

 

   

   

   
     

   
          (8) 

The rests of the terms in Eq. (7) lead to the boundary conditions for the shell. The 

boundary data on an edge  = constant are 

0 0either 0 or known,N N u     

0 0either 0 or known,N N v     

0 0either 0 or known,Q Q w     

0either 0 or known,M M      

0either 0 or known.M M                 (9) 

The boundary conditions on an edge   constant can be found by replacing   and 0u  to 

  and 0v ; respectively, and vise versa in Eqs (9). Depending upon the type of a shell 

boundary, five boundary conditions should be chosen from the above cases at each edge. 

Therefore, there are 32 possible types of boundary conditions at each edge. Amongst 

those possible boundary conditions, two simply supported, S1 and S2, a clamped edge, C, 

and a free edge, F, boundary conditions at the edge  =constant are selected in this work 
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as 

0 0 0 01: 0, 2 : 0,S u N w M S N v w M                 

0 0 0: 0, : 0.C u v w F N N Q M M                       (10) 

The stress-strain relationships for a single orthotropic lamina is  

11 12 16

12 22 26

44 45

45 55

16 26 66

0 0
0 0

0 0 0
0 0 0

0 0

z z

z z

Q Q Q
Q Q Q

Q Q
Q Q

Q Q Q

 

 

 

 

 

 

 

 

 

 

    
    
    

        
    
    
        

     (11) 

wherein Eq. (11) material properties are defined in terms of the stiffness coefficients as 

4
22

22
6612

4
1111 )2(2 nQnmQQmQQ   

)()4( 44
12

22
66221112 nmQnmQQQQ   

4 2 2 4
22 11 12 66 22 45 55 442( 2 ) , ( ) ,Q Q n Q Q m n Q m Q Q Q mn       

3 3 2 2
16 11 12 66 12 22 66 44 44 55( 2 ) ( 2 ) ,Q Q Q Q m n Q Q Q mn Q Q m Q n         

3 3 2 2
26 11 12 66 12 22 66 55 44 55( 2 ) ( 2 ) , ,Q Q Q Q mn Q Q Q m n Q Q n Q m         

2 2 2 2 2
66 11 22 12 66( 2 ) ( ) ,Q Q Q Q m n Q m n               (12) 

In Eqs (12), cosm  , sinn   , where   is the angle between the principal axis of 

material orthotropy and  -axis. The components of the material properties in Eqs (12) in 
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terms of engineering constants are 

11 1 12 21 12 1 21 12 21 22 2 12 21/ (1 ), / (1 ), / (1 ),Q E Q E Q E             

44 23 55 13 66 12, ,Q G Q G Q G          (13) 

Substituting Eqs (3) into Eqs (11), the resultant equations into Eqs (5), and taking the 

integration in the thickness direction for a shell composed of M layers while ignoring 

terms of O 2( )z R  lead to the following relationships for the stress resultants 

11 12 16 16 11 12 16 16

12 22 26 26 12 22 26 26

16 26 66 66 16 26 66 66

16 26 66 66 16 26 66 66

11 12 16 16 11 12 16 16

12 22 26 26 12 22 26
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   
   
   
   
   
   
   
      

 

55 45 55 45 0

45 45 044 44

55 45 55 45

45 4544 44

ˆ ˆ
,

/
/ˆ ˆ

z

z

A A B BQ
Q A BA B

RP B B D D
RP B DB D

 

 

 

 









    
    
         
    

         

           (14) 

0 0

0 0

0 0

ˆ, ,
ˆ, , , , 1, 2,4,5,6,
ˆ, ,

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

A A c B A A c B

B B c D B B c D i j

D D c E D D c E

   


    


    

         (15) 

where 0
1 1c

R R 

 
   
 

 and 
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( )
1

1

( ) 2 2
1

1

( ) 3 3
1

1

( ) 4 4
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k
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k

N
k
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k
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N

k
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k

A Q h h

B Q h h
i j

D Q h h

E Q h h
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
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


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
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
  




  

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 


 
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




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( )
1

1

( ) 2 2
1

1

( ) 3 3
1

1

( )

1 ( ) , 4,5,
2
1 ( )
3

N
k

ij ij k k
k

N
k

ij ij k k
k
N

k
ij ij k k

k

A K K Q h h

B K K Q h h i j

D K K Q h h

 

 

 














  




  



  








          (16) 

1k kh h   is the thickness of the k-th layer, and K  and K  are correction factors in   

and   directions, respectively. It is worth mentioning that the presence of the 

components of ABD  and ˆ ˆ ˆABD  with the components of ABD in Eq. (14) is the 

difference between the theories used here (FSDTQ) and FSDT. The relevant equations 

for FSDT may be found by letting 0 0c  ; thus, ˆ
ij ij ij      where , 1, 2,4,5,6i j   and 

, ,A B D  . 

In order to numerically investigate the bending of shells, Eqs (4) should be 

substitute into (14). We put the resultants with Eqs (8) and arrive to seventeen system of 

first-order equations (instead of substituting the resultant into Eqs (8) and arriving to 

second order derivatives). The system of equations is 

[ ] ,K X q           (17) 
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where 

0 0 0[ , , , , , , , , , , , , , , , , ] ,TX u v w N N N N M M M M Q Q P P                

[ , , ,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ,T
zq q q q            (18) 

and the non-zero components of matrix K  are 

(3 1, 4 6) ,BK k k B
 

 
   

   
(3 1, 4 7) ,BK k k




   

  
(3 1,4 8) ,AK k k




  

  

(3 1,4 9) ,AK k k A
 

 
   

   
(1,14) ,ABK

R



 

(4,14) ,K AB   

(3 1,2 15) ,ABK k k
R

  

 
(3 2,4 6) ,AK k k




   

  
(3 2,4 7) ,AK k k A

 

 
   

   

(3 2, 4 8) ,BK k k B
 

 
   

   
(3 2,4 9) ,BK k k




  

  
(3 2,2 14) ,ABK k k

R

  

 

(2,15) ,ABK
R



 

(5,15) ,K AB   (3,6) ,ABK
R

 

 

(3,7) ,ABK
R

 

 
(3,8) ,ABK

R

 

 
(3,9) ,ABK

R

 

 

(3,14) ,K B





  
(3,15) ,K A






  
 

16 1611 12(6 4 ,1) ,
A AA A B AK k

A B AB AB   

   
    

     
16 1612 11(6 4 ,2) ,

A AA A A BK k
B A AB AB   

   
    

     

16 1611 12(6 4 ,3) ,
A AA AK k

R R R  


   

 
16 1611 12(6 4 ,4) ,

B BB B B AK k
A B AB AB   

   
    

     

16 1612 11(6 4 ,5) ,
B BB BB AK k
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26 2612 22
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26 2622 12
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A AA A A BK k
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B
K k A

R

  

 
44
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BK k A k
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( , ) 1, 6,7, 17.K i i i    (19) 

In the Eqs (19), in the terms containing k , for 1k   the components of matrixes ˆ, ,B B B  

should change to ˆ, ,D D D , respectively; then ˆ, ,A A A  should change to ˆ, ,B B B , 
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respectively. The present formulation facilitates the direct application of all kinds of 

boundary conditions in the ensuing numerical treatment. The numerical solution of Eqs 

(17) is accomplished by means of the generalized differential quadrature (GDQ) method 

in this work. The method is utilized by several investigators [e.g. 15]. In the GDQ 

method the derivative of a function at any discrete point in a direction is approximated as 

a weighted linear sum of the function values at all the sampling points in that direction 

1

( ) ( ), {1,2,..., }
N

k
kl l

l

dF x C F x k N
dx 

        (20) 

where N is the number of sampling points selected in the x-direction and Ckl are the 

weighting coefficients of the first derivative with respect to variable x. The coefficients in 

Eqs (20) are 

( ) , , 1,2,..., ,
( ) ( )

k
kl

k l l

M xC k l N k l
x x M x

  


 

1
1,2,...,

N

kk kl
l
l k

C C k N



              (21) 

where 
1

( ) ( )
N

k k l
l
l k

M x x x



  . In order to have a denser distribution of grid points near 

boundaries, the sampling points are chosen in the form of cosine distribution as 

[ ]x
k

L k 1x 1 cos( ) , k 1,2,...,N
2 N 1




  


               (22) 
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Figure 5.1: Schematic view of a cylindrical shell. 

 

where Lx is the length in x-direction. This described GDQ procedure should be applied to 

the system of first order differential equations (17) with conjunction of boundary 

conditions (10) to find unknown vector X  in each grid points.  

 

5.2. Numerical results by GDQ 

For the numerical analyses, laminated cylindrical panels with radius R are selected 

in this work ( Fig. 5.1). Let the  -axis coincide with the curved edge of the cylindrical 

panel; thus, R R     and A B 1  . The length-to-arc ratio, / 1a b   , thickness 

ratio, / 10a h   (Moderately thick), depth ratio, / 2a R  (very Deep) and equal shear 

correction factors in both directions, 2 5 / 6k   under uniformly distributed load q  are 

considered unless otherwise mentioned. The material properties for orthotropic materials  
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Figure 5.2: Different type of boundary conditions. 

 

are considered as 1 2/ 25,E E  12 2/ 0.5,G E  23 2 0/ .2,G E  13 12,G G  and 12 0.25  . 

Dimensionless transverse displacement * 3 3 4
210 nw E h w q a , moment and force 

resultants, respectively, * 3 210 ,i iM M qa  and * 3 310 ,i iN N qa  where ,i    at the 

center of the shell are calculated based on both FSDT and FSDTQ.  

The convergence of the presented numerical method is studied with the increment 

of GDQ grid points in Table 5.1. An isotropic shell with fully S-2 type boundary 

condition (shear diaphragm) where the exact solution exists and reported by Asadi et al. 

[2] is considered. The results show that the convergence of the center displacement 

occurs with nine sampling points in each side which is faster than the convergence of the 

moment and force resultants. However, all results converged to the exact solution by the 

increment of sampling points to fifteen with the desired accuracy. 
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Table 5.1: Convergence study of an isotropic cylindrical shell with 0.25  . 

GDQ 
points 

*w  
*M  

*M   
*N  

*N  
7 7  12.1113 9.9148 4.5266 657.10 573.42 
9 9  12.1080 9.9278 4.5213 657.48 572.57 

11 11  12.1080 9.9288 4.5215 657.46 572.60 
13 13  12.1080 9.9288 4.5215 657.47 572.61 
15 15  12.1080 9.9288 4.5215 657.47 572.61 
Exact [9] 12.108 9.9288 4.5215 657.47 572.61 

 

Dimensionless displacement and moment resultants of isotropic cylindrical panels 

with length-to-arc ratio, a/b = 3, and two different depth ratio, having fully S1-type 

simply-supported boundary condition, are presented in Table 5.2. In this example, results 

of presented theories (FSDT and FSDTQ) are compared against each others and those of 

other different FSDTs reported in Chaudhuri and Kabir [16] and a HSDT considering the 

effect of depth presented by Yaghoubshahi et al. [17]. Comparing the present theory with 

the cited theories reveals that the results of FSDTQ are in a better agreement with those 

of a HSDT including the effect of depth rather than other FSDTs. 

For the rest of the numerical examples, orthotropic cylindrical shells with three 

different lay-ups, having six different types of boundary conditions are considered (Fig. 

5.2). These are combinations of clamped, free and S2-type simply supported (called only 

simply supported after this) boundary conditions. Presented results from both FSDT and 

FSDTQ are compared against each others and against those obtained using 3D elasticity 

by finite element method (FEM). Figure 4.1 shows the mesh pattern of a typical 
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Table 5.2: Comparison of different shell theories for isotropic cylindrical panels with 
0.3   

Shell Theory *w  
*M  

*M   
 R/b=10 R/b=1 R/b=10 R/b=1 R/b=10 R/b=1 

Modified Sanders 123.37 12.97 37.10 3.23 109.68 11.16 
Sanders 123.35 12.95 37.10 3.22 109.66 11.11 
Reissner 123.37 12.97 37.10 3.23 109.68 11.16 
Donnell 123.35 12.95 37.10 3.22 109.66 11.11 
FSDT 126.39 13.19 37.03 3.24 109.23 11.05 

FSDTQ 126.55 13.32 37.07 3.21 109.29 10.77 
HSDT 126.60 13.32 37.07 3.21 109.27 10.93 

 

cylindrical shell modeled using FEM wherein 3D elements are used. Moreover, 

uniformly distributed load, q , is divided into two positive and negative pressures at the 

top and bottom planes of the shell; respectively, such that the whole force on the shell is 

equal to abq . For simply supported boundary condition at   constant, W  and V  are 

set to zero at the relevant plane of the boundary condition to make sure that 

0 0 0v w     in presented theories. Also, all three displacements of the plane at the 

boundary edge are set to zero and free in the 3D finite element analyses for clamped and 

free boundary conditions; respectively. Moreover, the number of quadratic solid elements 

used in FEM did not need to exceed 40 40 12  for the convergence of the results. 

Dimensionless displacement, force and moment resultants of a cross-ply, 3[0 / 90] , 

cylindrical shell with six different boundary conditions are shown in Table 5.3. FSDTQ 

predicts the center displacement, moment resultants, and force resultants better than 

FSDT up to 2%, 17% and 4%, respectively (when compared with 3D results). Also,  
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Table 5.3: Comparison of dimensionless displacements, moments and force 
resultants of 3[0 / 90]  cylindrical shells with different boundary conditions. 

B.C.  *w  
*M  

*M   
*N  

*N  
 FSDT 5.2715 34.605 22.103 494.05 392.25 
SSSS FSDTQ 5.3092 34.841 21.767 500.66 396.76 
 3D 5.4545 32.959 19.755 514.53 409.77 
       
 FSDT 0.3056 0.9063 5.3758 11.194 482.39 
CCCC FSDTQ 0.3104 0.9120 4.6266 11.460 482.34 

3D 0.3124 1.0052 4.3571 9.3979 484.99 
       
 FSDT 3.6668 20.459 14.838 131.97 324.27 
CSCS FSDTQ 3.7029 20.491 14.599 133.86 328.19 
 3D 3.9818 18.849 14.150 139.45 351.29 
       
 FSDT 3.5657 20.032 14.849 132.21 413.22 
CFCF FSDTQ 3.5876 19.982 14.721 132.70 418.01 
 3D 3.8508 18.436 15.631 149.12 448.95 
       
 FSDT 4.7281 28.411 18.685 419.50 473.51 
CFSF FSDTQ 4.7577 28.634 18.452 421.25 478.43 
 3D 5.0026 27.018 19.257 447.13 503.75 
       
 FSDT 14.851 0.7554 56.516 3.321 115.14 
FCFS FSDTQ 14.997 0.7886 56.539 3.507 115.26 

3D 17.609 0.8101 56.365 5.384 117.73 

 

results for FCFS-type boundary condition are farthest results from the 3D results for the 

same lay-up. Similar results are presented in Table 5.4 for an angle-ply lay-up, 

namely 3[ 45 / 45] . The error of dimensionless displacement in this lay-up for both FSDT  
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Table 5.5: Comparison of dimensionless displacements, moments and force 
resultants of [30 / 60 / 45]  cylindrical shells with different boundary 
conditions. 

B.C.  *w  
*M  

*M   
*N  

*N  
 FSDT 2.1496 10.089 9.5929 566.59 531.35 
SSSS FSDTQ 2.1552 11.176 9.5743 581.95 537.22 
 3D 2.2130 11.626 9.7328 579.92 538.21 
       
 FSDT 0.4794 2.7919 4.3264 300.33 476.94 
CCCC FSDTQ 0.4896 2.8885 3.8726 305.44 476.42 

3D 0.4938 2.9508 3.9819 307.92 477.42 
       
 FSDT 1.3012 3.7353 5.0170 552.89 531.00 
CSCS FSDTQ 1.3189 4.6978 5.0165 567.31 539.31 
 3D 1.3472 5.0247 5.1928 575.73 541.13 
       
 FSDT 1.3267 1.8062 2.4559 636.00 677.02 
CFCF FSDTQ 1.3222 2.7661 2.1690 637.81 691.40 
 3D 1.3651 3.4142 2.2485 647.31 697.87 
       
 FSDT 2.9930 12.148

8 
1.2989 462.19 691.47 

CFSF FSDTQ 3.0494 13.953
0 

0.3287 457.20 700.49 
 3D 3.2022 15.023 0.4257 459.31 708.15 
       
 FSDT 35.975 60.918 71.845 101.28 321.54 
FCFS FSDTQ 36.462 64.326 72.414 132.12 326.32 

3D 36.940 63.947 73.632 133.11 329.68 

 

and FSDTQ increases to ten percent. Although errors for all results increase in the angle-

ply lay-up when compared to cross-ply lay-up. Moreover, the maximum errors in force 

resultants are 17% for FSDT whereas it is 3% for FSDTQ. The last example is the same 

as the two previous examples but for the lay-up of [30 / 60 / 45]  and its results are shown 
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in Table 5.5. Dimensionless displacement and moment resultants for all type of boundary 

conditions predicted by FSDTQ are in a better agreement with 3D results rather than 

those of FSDT for this general lay-up. Indeed, the FSDT predicts moment resultants out 

of order in some cases such as the case of CFSF wherein the error of 205% is observed 

whereas this error is nine percent for FSDTQ! Also, the maximum error of FSDTQ in 

force resultants is under two percent where it is around 24% for FSDT. 

 

5.3. Conclusions 

Static analyses are performed on composite cylindrical shells with different 

boundary conditions and lay-ups using FSDT, FSDTQ and 3D using GQD. FSDTQ 

offers a more accurate representation of the stiffness parameters and the stress resultant 

equations by including the 1+z/R in the equations. Almost all analyses are showing that 

there is a significant improvement (closer to 3D and HSDTs that includes the effects of 

depth) obtained when FSDTQ is used. This improvement increases when angle-ply or 

generally laminated composites are used for shells. Also, it varies with the change of 

boundary conditions. This analysis is a prelude to the derivation of a proper higher order 

shell theory (e.g. third order) where the term (1+z/R) needs to be truncated at the third 

order. 
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CHAPTER 6 

FREE VIBRATION OF THICK LAMINATED CYLINDERICAL 

SHELLS WITH DIFFERENT BOUNDARY 

CONDITIONS USING GDQ 

 

Light weight and high stiffness of structures made of laminated composite 

materials have provided excellent new opportunities in the design of engineering 

structures such as automotive, aerospace and submarine ones. The simplicity of shell and 

plate theories and the complexity of composite structures making them hard to analyze by 

three dimensional (3D) elasticity methods have led to the development of different shell 

and plate theories. In the development of plate theories, the thickness ratio is the main 

issue in categorizing different plate theories which are mainly classified into Classical 

Theories, First-order Shear Deformation Theories (FSDTs) and Higher-order Shear 

Deformation Theories (HSDTs). Besides the effect of the thickness of shells, the effect of 

depth ratio of shells should be included in the development of shell theories. Some 

researchers included the effect of the depth ratio in the development of shell theories, e.g. 

Qatu [1,2], Asadi et al. [3] and Yaghoubshahi et al. [4]. However, in spite of the effects 

of thickness ratio, the effects of the depth ratios need to be examined in the development 

of different shell theories.  
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Appearance of the term (1+z/R) in both the strain displacement and stress resultant 

equations in the derivation of the basic equation of shells makes it difficult to include the 

effects of depth ratio in shell theories. The term was neglected by first analysts of 

composite thin shells e.g. Ambartsumian [5] which is understandable for thin shells. In 

addition to the inclusion of this term, both shear deformation and rotary inertia should be 

included for composite thick shells. Early shear deformation shell theories included both 

shear deformation and rotary inertia rotary but failed to include the z/R terms [6,7]. We 

will refer to these as simply the first order shear deformation theory (FSDT). 

Interestingly, some researchers developed higher order theories while still neglecting the 

term, e.g. Librescu et al. [8,9] and Reddy and Liu [10]). Qatu [1,2] presented equations 

where the term is considered in the shell equations for composite deep thick shells. We 

will refer to his equations as the first order shear deformation shell theory by Qatu 

(FSDTQ). Asadi et al. [3] used FSDTQ to find exact static and free vibration solution of 

isotropic and composite deep and thick shells with fully simply supported boundary 

conditions. They showed that using of FSDTQ instead of FSDT significantly improves 

the results comparing to 3D results. However the effect of using FSDTQ on shells with 

different boundary conditions and general lay-ups of laminates needs to be examined. 

Much of the literature on shell analysis is reviewed recently showing that inaccurate 

equations are still used in a significant portion of shells works (Qatu et al. [11,12] and 

Carrera [13,14].  

Equations of motion with required boundary conditions for a deep and thick 

cylindrical composite shell are obtained using FSDTQ. It is shown that FSDT is a 

simplification from FSDTQ where the effects of the depth in shell analyses are neglected. 
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Equations of motion are put together with the equations of stress resultants to arrive at a 

system of fifteen first-order differential equations. General Differential Quadrature 

(GDQ) method is employed to solve this system of first-order differential equations to 

find the shell natural frequencies and mode shapes. Isotropic, cross-ply, angle-ply and 

general lay-up cylindrical shells with six types of different boundary conditions which are 

combinations of simply supported, clamped, and free boundary conditions are examined 

using both FSDTQ and FSDT. Moreover, the first five natural frequency parameters and 

relevant mode shapes for those shells are obtained and compared with those of a 

converged 3D finite element analysis done by ANSYS®. Also, Errors of FSDTQ and 

FSDT results (when comparing them to those of the 3D results) are obtained and 

discussed. 

 

6.1. Formulation of free vibration for composite cylindrical shells 

A cylindrical shell with in-plane axis x  in the direction of the axis of shell, 

circumferential in-plane axis  , normal to the middle-plane axis z  and radius R , Fig. 

5.1, is considered. The Hamilton’s principle for a body with surface S and volume V 

between two arbitrary time intervals 0t  and 1t  requires that  

1

0

[
t

x x z z x x xz xz z zt
V

                


    


   

( )] 0,ext
S

u u v v w w dV W dS dt    


    


    (1) 
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where   and  , respectively, are stress and strain components,   is the mass density, 

and extW  is the virtual work done by external forces. Employing the first-order shear 

deformation model, the displacement components approximate as  

0( , , , ) ( , , ) ( , , ),xu x z t u x t z x t      

0( , , , ) ( , , ) ( , , ),v x z t v x t z x t      

0( , , , ) ( , , ),w x z t w x t                 (2) 

where 2 2h z h    and h  is the shell thickness, 0u , 0v , and 0w  are midsurface 

displacements of the shell, and x  and   are midsurface rotations. The strain-

displacement relationships in the principal coordinates of a cylindrical shell can be 

simplified from relevant equations for the general shell [15] as 

1 1, ( ), , ,
1 / 1 /x z x

u v w w u v
x z R R z z R x    

 

    
     
      

 

1, (1 / ) ( ).
1 / 1 /xz z

w u w vz R
x z z R z z R 



   
    
     

          (3) 

By substituting Eqs (2) into (3), strain-displacement equations become 

0 0 01, ( ), 0,
1 /

x
x z

u v wz z
x x z R R





  
  

   
     


 

0 01, ( ),
(1 / )

x
x x

v uz z
x x z R



 

  
 

   
   


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0 0 01, ( ).
1 /xz x z

w w v
x z R R 

 
   

 
    


            (4) 

The stress resultants are defined as 

/2

/2
(1 ) ,

hT T

x x x x x x x xz x xh

zN N Q M M z z dz
R       


         

/2

/2
,

hT T

x x x z xh
N N Q M M z z dz             


                 (5) 

where the superscript T stands for the transpose of a vector. The applied load per unit 

area on the middle surface of the shell is ze e ex x zq q q q    , where the unit vectors xe  

and e  are tangent to the principal axes and ze  is perpendicular to the shell surface. Let 

0 0 0, and x x xz    be the components of applied traction on the edges x = constant and 

0 0 0, and x z      be the components of applied traction on the edges  = constant. The 

external work done by the external loads on the shell yields 

/2

0 0/2
( ) (

h

ext x z x xx h
w q u q v q w AB dx d u 




        


         

/2

0 0 0 0/2
) (1 / ) ( ) .

h

xz x zh
x

w z R dz d v u w dz dx          


        (6) 

Substituting Eqs (5) into Eq. (6), the resultant equation with Eqs (4) into Eq. (1), 

employing the definitions (5), setting 0,z   and carrying out the required manipulations 

results in the following five equations of motion 
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1 0 2 1 0 2, ,x xx
x x

N N N QN q I u I q I v I
x x R

   

  
 

  
        

   
 

1 0 ,x
z

Q NQ q I w
x R

 




   

 
 

2 0 3 2 0 3, ,x xx
x x

M M MM Q I u I Q I v I
x x

  

  
 

  
       

   
         (7) 

where 

 
1

( ) 2 31
1 2 3 4

1
, 1,2,3, , , , 1, , , .

k

k

hN TT ki
i i

k h

II I i I I I I z z z dz
R









 
       

 
          (8) 

The boundary data on an edge x = constant are 

0 0either 0 or known,x xN N u    

0 0either 0 or known,x xN N v     

0 0either 0 or known,x xQ Q w    

0either 0 or known,x x xM M     

0either 0 or known.x xM M                 (9) 

The boundary conditions on an edge   constant can be found by replacing x  and 0u  to 

  and 0v , respectively, and vise versa in Eqs (9). Depending upon the type of the shell 

boundary, five boundary conditions should be chosen from the above cases at each edge. 

Therefore, there are 32 possible types of boundary conditions at each edge. Amongst 
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those possible boundary conditions, a simply supported edge, S, clamped edge, C, and 

free edge, F, boundary conditions are selected in this work. Theses boundary conditions 

at the edge x =constant can be expressed as 

0 0 0 0 0: 0, : 0,x xS N v w M C u v w               

: 0.x x x x xF N N Q M M                 (10) 

The stress-strain relationships for a single orthotropic lamina in a cylindrical shell is  

11 12 16

12 22 26

44 45

45 55

16 26 66

0 0
0 0

0 0 0
0 0 0

0 0

x x

z z

xz xz

x x

Q Q Q
Q Q Q

Q Q
Q Q

Q Q Q

 

 

 

 

 

 

 

 

    
    
    

        
    
    
        

     (11) 

wherein Eq. (11) material properties are defined in terms of the stiffness coefficients as 

4 2 2 4 2 2 4 4
11 11 12 66 22 12 11 22 66 122( 2 ) , ( 4 ) ( ),Q Q m Q Q m n Q n Q Q Q Q m n Q m n          

4 2 2 4
22 11 12 66 22 45 55 442( 2 ) , ( ) ,Q Q n Q Q m n Q m Q Q Q mn       

3 3 2 2
16 11 12 66 12 22 66 44 44 55( 2 ) ( 2 ) , ,Q Q Q Q m n Q Q Q mn Q Q m Q n         

3 3 2 2
26 11 12 66 12 22 66 55 44 55( 2 ) ( 2 ) , ,Q Q Q Q mn Q Q Q m n Q Q n Q m         

2 2 2 2 2
66 11 22 12 66( 2 ) ( ) .Q Q Q Q m n Q m n               (12) 

In Eqs (12), cosm  , sinn   , where   is the angle between the principal axis of 

material orthotropy and x -axis. The components of the material properties in Eqs (12) in 
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terms of engineering constants are 

11 1 12 1 21 22 2 44 23 55 13 66 12/ , / , / , , , ,Q E Q E Q E Q G Q G Q G          (13) 

where 12 211     . We substitute Eqs (4) into Eqs (11) the resultant equations into Eqs 

(5), carry out the integration in the thickness direction for a cylindrical shell composed of 

M layers while ignoring terms of O 2( )z R  and arrive at the following relationships for 

the stress resultants 

11 12 16 16 11 12 16 16

12 22 26 26 12 22 26 26

16 26 66 66 16 26 66 66

16 26 66 66 16 26 66 66

11 12 16 16 11 12 16 16

12 22 26 26 12 22 26

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x

x

x

x

x

x

A A A A B B B BN
A A A A B B B BN
A A A A B B B BN

N A A A A B B B B
M B B B B D D D D
M B B B B D D D
M
M










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where 0 1/c R   and 
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          (15) 

1k kh h  is the thickness of the k-th layer, and xK  and K  are correction factors in x  and 

  directions, respectively. It is worth mentioning that the presence of the components of 

ABD  and ˆ ˆ ˆABD  with ABD  matrixes in Eq. (14) is the difference of the present theory 

(FSDTQ) by FSDT. The relevant equations for FSDT may be found by letting 0 0c  ; 

thus, ˆ
ij ij ij      where , 1, 2,4,5,6i j   and , ,A B D  . 

In order to numerically investigate the bending of shells, Eqs (4) should be 

substitute into (14). We put the resultants with Eqs (7) and arrive to system of fifteen 

first-order differential equations instead of substituting the resultant into Eqs (7) and 

arriving to a system of five second-order differential equations. The system of fifteen 

first-order differential equation is 

2

2{[ ] [ ] } ,K M X q
t


 


        (16) 



www.manaraa.com

 

154 

where 0 0 0[ , , , , , , , , , , , , , , ]T
x x x x x x x xX u v w N N N N M M M M Q Q         , and 

1 2 3, ,x zq q q q q q    are the non-zero components of q . The non-zero components of 

matrix K  are 

(3 1,4 6) ,K k k
x


  


 (3 1,4 9) ,K k k



  


 (4,14) 1,K    

(3 2,4 7) ,K k k



  


 (3 2, 4 8) ,K k k

x


  


 1(2,15) ,K
R

  

(5,15) 1,K    1(3,7) ,K
R

   (3,14) ,K
x




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45(15,4) ,K A  
44

ˆ(15,5) ,K A  ( , ) 1, 6,7, 17,K i i i         (17) 

where in the above equations in the terms containing k , it takes values of 0 and 1 and the 

components of matrixes ˆ, ,B B B  should change to ˆ, ,D D D , respectively; then ˆ, ,A A A  

should change to ˆ, ,B B B , respectively, for 1k  . Also, the non-zero components of the 

symmetric matrix M are 

1 3 2(1,1) (2,2) (3,3) , (4,4) (5,5) , (1,4) (2,5) .M M M I M M I M M I               (18) 
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It should be emphasized that the presence of all the components of displacement and 

stress resultants in the system of Eqs (16), facilitates the direct application of all kinds of 

boundary conditions in the ensuing numerical treatment. The system of Eqs (16) is the 

equations of motion of the cylindrical shell. Letting 0q   and substituting 1( ) i tX t X e   

in the Eq. (16) lead to 

2
1[ ] 0,K M X           (19) 

which is the relevant eigenvalue problem to find natural frequencies of the shell. The 

numerical solution of Eqs (19) may be accomplished by means of the generalized 

differential quadrature (GDQ) method. The method is utilized by several investigators; 

see for instance [16]. In the GDQ method the derivative of a function at any discrete 

point in a direction is approximated as a weighted linear sum of the function values at all 

the sampling points in that direction 

},...,2,1{),(
)(

1

NkxFC
dx

xdF N

l
lkl

k 


      (20) 

where N is the number of sampling points selected in the x-direction and Ckl are the 

weighting coefficients of the first derivative with respect to variable x and 

lkNlk
xMxx

xM
C

llk

k
kl 


 ,,...,2,1,,

)()(
)(  

1
, 1,2,..., ,

N

kk kl
l
l k

C C k N



              (21) 

where 





N

kl
l

lkk xxxM
1

)()( . The sampling points are chosen in the form of cosine 
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distribution as 

[ ]x
k

L k 1x 1 cos( ) , k 1,2,...,N
2 N 1




  


                     (22) 

where Lx is the length in x-direction. Application of Eqs (20) with respect to variables x  

and   to system of Eqs (19) in conjunction with boundary conditions (10) leads to a 

system of algebraic equations for displacements and stress resultants at the sampling 

points. 

 

6.2. Numerical results using GDQ 

For the numerical analyses, laminated cylindrical shells with the length-to-arc 

ratio, / 1a b  , thickness ratio, / 10a h   (Moderately thick), depth ratio, / 2a R  (very 

Deep) and equal shear correction factors in both directions, 2 5 / 6k   are considered. The 

material properties for orthotropic materials are considered as 1 2/ 25,E E   

12 2/ 0.5,G E  23 2 0/ .2,G E  13 12,G G and 12 0.25  . The first five natural frequency 

parameters 2 2
2/ , 1,...,5i ia E h i     with relevant mode shapes are calculated based 

on both FSDT and FSDTQ.  

The convergence of the presented numerical method is studied with the increment 

of the GDQ grid points in Table 6.1. An isotropic shell with fully simply supported 

boundary condition (shear diaphragm) where the exact solution exists and reported by 

Asadi et al. [3] is considered. The first natural frequency parameter converges with seven 
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sampling points which is very fast; however, eleven sampling points are required for the 

convergence of the other four natural frequencies. 

 

Table 6.1: Convergence study of first five natural frequency parameters for an 
isotropic cylindrical shell. 

GDQ points 1  2  3  4  5  
5 5  9.5816 14.3482 19.821

9 

21.5114 21.6487 
7 7  9.5961 12.3892 19.668

9 

21.3934 22.7221 
9 9  9.5961 12.3817 19.660

9 

21.3792 23.9669 
11 11  9.5961 12.3813 19.660

4 

21.3784 23.9857 
Exact 

(Asadi et 

al., 2011) 

9.5961 12.381 19.660 21.378 23.986 
 

For the rest of the numerical examples, orthotropic cylindrical shells with three different 

lay-ups and six different types of boundary conditions are considered, Fig. 5.2, which are 

combinations of clamped, free and simply supported boundary conditions. Presented 

results from both FSDT and FSDTQ are compared against each others and against those 

obtained using 3D elasticity from finite element method (FEM). Fig. 4.1 shows the Mesh 

pattern of a typical cylindrical shell modeled using FEM wherein 3D elements are used. 

For simply supported boundary condition at   constant, W  and V  are set to zero at the 

relevant plane of boundary condition to make sure that 0 0 0v w     in presented 

theories. Also, all three displacements of the plane at boundary edge are set to zero and 

free in the 3D finite element analyses for clamped and free boundary conditions, 

respectively. Moreover, the number of quadratic solid elements used in FEM did not   
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Table 6.2: Comparison of first five natural frequency parameters of [0/90] 3  
cylindrical shells with different boundary conditions. 

B.C.  1  2  3  4  5  
 FSDT 14.322 24.337 32.188 35.746 42.181 
SSSS FSDTQ 14.286 24.242 32.069 35.575 42.031 
 3D 14.018 22.265 30.663 32.825 37.790 
       
 FSDT 28.417 40.157 40.346 48.160 56.039 
CCCC FSDTQ 28.319 40.005 40.196 47.953 55.815 

3D 26.249 37.072 37.624 44.511 52.327 
       
 FSDT 17.105 26.331 33.875 37.524 43.348 
CSCS FSDTQ 17.039 26.220 33.748 37.342 43.191 
 3D 16.338 24.020 32.222 34.513 38.824 
       
 FSDT 14.231 15.715 21.910 29.537 31.557 
CFCF FSDTQ 14.170 15.680 21.787 29.425 31.522 
 3D 13.185 14.946 20.394 27.278 29.563 
       
 FSDT 11.977 13.670 20.644 28.395 30.519 
CFSF FSDTQ 11.923 13.639 20.526 28.278 30.478 
 3D 11.251 13.155 19.310 26.175 28.562 
       
 FSDT 6.3624 11.783 21.895 23.421 24.217 
FCFS FSDTQ 6.3302 11.691 21.817 23.266 24.229 

3D 5.8467 11.398 19.907 21.586 24.115 
 

exceed 40 40 12  for the convergence of the results. Table 6.2 and Fig. 6.1 show first 

five natural frequency parameters and mode shapes, respectively, for a 3[0 / 90]  

cylindrical shell for the six types of boundary conditions. In all types of boundary 

conditions, natural frequency parameters predicted by 3D are the lowest and FSDTQ 

gives lower natural frequency parameters than those of FSDT and closer to 3D results. 

However, all three theories predict the same mode shapes. 
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Figure 6.1: First five mode shapes of a 3[0 / 90]  cylindrical shell with different 
boundary conditions. 
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Figure 6.2: First five mode shapes of a 3[ 45 / 45]  cylindrical shell with different 
boundary conditions. 

 

Tables 6.3 and 6.4 show the same results as in the previous table but for angle-ply 

3[ 45 / 45]  and general [30 / 60 / 45]  lay-ups, respectively. Also, the mode shapes for 

angle-ply and general lay-ups cylindrical shells are depicted in Figures 6.2 and 6.3, 

respectively.  
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Table 6.4: Comparison of first five natural frequency parameters of [30/60/45] 
cylindrical shells with different boundary conditions. 

B.C.  1  2  3  4  5  
 FSDT 20.357 20.805 28.668 31.759 41.135 
SSSS FSDTQ 20.258 20.809 28.449 32.358 40.992 
 3D 19.931 20.479 28.226 32.844 39.510 
       
 FSDT 29.908 36.690 45.599 46.551 51.587 
CCCC FSDTQ 29.832 36.505 45.445 46.441 51.166 

3D 29.778 36.579 45.383 46.621 50.667 
       
 FSDT 25.514 25.657 32.249 36.334 44.039 
CSCS FSDTQ 25.265 25.435 32.348 36.302 45.225 
 3D 25.116 25.242 32.130 36.199 43.495 
       
 FSDT 13.779 14.794 23.740 25.518 27.560 
CFCF FSDTQ 13.831 14.917 23.400 25.622 27.752 
 3D 13.671 14.735 23.138 25.413 26.795 
       
 FSDT 10.169 12.568 19.604 21.705 22.680 
CFSF FSDTQ 10.102 12.747 19.188 21.475 22.680 
 3D 9.9874 12.561 18.859 21.079 22.410 
       
 FSDT 4.0734 11.641 15.515 21.235 25.949 
FCFS FSDTQ 4.0603 11.164 15.241 20.856 25.568 

3D 4.0348 11.246 15.220 20.777 25.448 
 

The same order in the calculated natural frequency parameters found in Table 1 is closely 

observed for the results in Tables 6.3 and 6.4. Also, both shear deformation theories give 

the same mode shapes as 3D results. It is worth mentioning that the difference between 

FSDT and FSDTQ and 
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Figure 6.3: First five mode shapes of a [30 / 60 / 45]  cylindrical shell with different 
boundary conditions. 

 

the difference between both of them and 3D results increase as the number of natural 

frequency increases in all three sets of results. Moreover the biggest difference in the 

results of shear deformation theories occurs in the second natural frequency parameter for 

FCFS boundary condition and the angle-ply lay-up wherein FSDTQ predicts a natural 

frequency 5.6% better than FSDT when comparing both to 3D results. 
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6.3. Conclusions 

The equations of motion with required boundary conditions are obtained for 

composite cylindrical shells based on FSDTQ and FSDT. These equations of motion with 

stress resultants equations are put together to arrive to fifteen first-order differential 

equations for free the vibration problem. These equations are solved numerically for 

different types of boundary conditions and lay-ups by means of GDQ method. FSDTQ 

offers a more accurate representation of the stiffness parameters and the stress resultant 

equations by including the 1+z/R in the equations. Almost all analyses are showing that 

there is a significant improvement (closer to 3D) obtained when FSDTQ is used. This 

improvement increases when angle-ply or generally laminated composites are used for 

shells. Also, it varies with the change of boundary conditions. This analysis is a prelude 

to the derivation of a proper higher order shell theory (e.g. third order) where the term 

(1+z/R) needs to be truncated at the third order. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

At first, reasonably accurate natural frequency parameters are delivered for a wide 

set of boundary conditions using the classical shell theory. The numerical Ritz method 

has been used for this purpose. Their accuracy is established through extensive 

convergence studies that yielded accuracy up to the third significant figure for many 

situations. These results can be used for benchmarking by researchers in future 

references. They can also be used by practicing engineers to gain more insight on the 

behavior of these shells undergoing a vibrational motion. In addition, the impact of shell 

curvature on shell frequencies is discussed. Only certain modes seem to be impacted 

significantly by curvature while others do not. Curvature and boundary condition are 

interacting to deliver the frequency pattern for each of the 21 cases studied. 

Then, both static and vibration analyses are performed on composite cylindrical 

shells using a widely used first order shear deformation theory with plate-like stiffness 

coefficients (FSDT) and a first order shear deformation theory by Qatu (FSDTQ) where 

these coefficients are integrated exactly or truncated to the first order. For benchmarking 

we used finite element analyses based upon the three dimensional elasticity (3D). FSDTQ 

offers a more accurate representation of the stiffness parameters and the stress resultant 

equations. Most analyses performed here show that there is an improvement (closer to 

3D) obtained when FSDTQ is used. In addition, such improvement is observed to be 
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higher for deeper and thicker shells than for thin shallow shells, especially in static 

analyses. It is worth mentioning that this study is the first study on the static analysis of 

composite shells by FSDTQ. Moreover, FSDTQ has been modified by the present author 

by using the radii of each laminate instead of the radii of the mid-plane in the calculating 

the moments of inertias and stress resultants. The results show that this modification 

improves FSDTQ’s results in general and significantly in some cases. 

In chapters five and six, FSDTQ’s equations are derived for general shells and 

composite cylindrical shells in order to be solved numerically for shells with different 

boundary conditions. For the first time, these equations are presented in a system of 

seventeen first-order differential equations for general composite shells and a system of 

fifteen first-order differential equations for cylindrical shells. These equations were 

solved numerically by means of GDQ method. It is worth mentioning that this 

formulation facilitates the direct application of different boundary conditions and avoids 

ill-conditioned matrices. Almost all analyses are showing that there is a significant 

improvement (closer to 3D and HSDTs that includes the effects of depth) obtained when 

FSDTQ is used. This improvement increases when angle-ply or generally laminated 

composites are used for shells. Also, it varies with the change of boundary conditions and 

the difference between FSDT and FSDTQ is more significant in static analysis rather 

than in free vibration analysis.  

It can be concluded from this dissertation that the limit of using FSDT is for the 

thickness ratio of ten and the depth ratio of 0.5 whereas the limit of the depth ratio was 

relaxed to the ratio of two by using FSDTQ. Also, FSDTQ gives better results even for 

thickness ratios bigger than ten and depth ratios smaller than two. Moreover, the run time 
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of codes written for FSDTQ is thirty times smaller than the run time of the same problem 

using 3D elasticity formulation. For example, for a typical shells solved in this 

dissertation the run time is around five minutes whereas it takes two and half hours to 

solve the same problem using 3D elements in FEM software. This emphasizes the value 

of using proposed shell theory instead of 3D elasticity in reducing of CPU time needed to 

solve complicated structures.  

This analysis is a prelude to the derivation of a proper higher order shell theory 

(e.g. third order) where the term (1+z/R) needs to be truncated at the third order. In this 

HSDT, not only the effect of thickness (available HSDTS) but also the effect of the 

curvature of the shells should be included in the theory. Currently, it has been proven that 

FSDTQ presents more accurate results than other available FSDTs in literature. Also, 

commercial finite element software packages use some sort of FSDTs in their shell 

elements which are accurate when the curvature of the shell is relatively small (i.e. 

shallow shells). We argue that based upon the work done here that it can be improved by 

the FSDTQ and modified FSDTQ presented in this dissertation. Consequently, building 

an element based on the presented theory and the implementation of it in commercial 

software like ANSYS® would be another suggestion for future works. 
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